
TECHNICAL WHITEPAPER

—

Introduction to SingleStoreDB
Bobby Coates, Product Marketing Manager

2022



Introduction to SingleStoreDB

—

Table of Contents
Table of Contents 2

Current Challenges in the Database Market 3

What is SingleStoreDB? 5

What is SingleStoreDB Not For? 6

Core SingleStoreDB Technologies 7

Architecture 7

Nodes 8

Universal Storage 9

Efficient for both OLTP and OLAP access 9

Tiered storage 10

Database Storage 10

Cloud Object Store 11

Query Code Generation 12

Compiled Queries and Query Plan Caching 12

Separation of Storage and Compute 14

Hash Partitioning 14

High Availability 15

Limitless Point-in-Time Recovery 15

Conclusion 16

2



Introduction to SingleStoreDB

—

About This White Paper

This white paper  is intended primarily for readers interested in data architecture, or looking for a
better understanding of how SingleStoreDB works and is different from other databases. While
SingleStoreDB can be deployed in the cloud, on-premises and a hybrid of both, this document
focuses on the cloud deployed database-as-a-service offering.

Current Challenges in the Database Market

The market is saturated with specialized database engines. As of January 2022,
https://db-engines.com/en/ranking ranks over 350 different databases. There is value in specialty
systems, but when applications are built as a complex web of different manually interconnected
databases, a lot of that value is eroded. Developers are manually rebuilding the general-purpose
databases via ETL and data flows between these specialized databases.

We believe two industry trends have driven this proliferation of new databases. The first trend is
the shift to cloud-native architectures designed to take advantage of elastic cloud infrastructure.
Cloud blob stores and block storage allow databases to tap into almost limitless, highly available
and durable data storage. Elastic compute instances allow databases to bring more compute to
bear at a moment's notice to deal with a complex query or a spike in throughput. The second trend
is the demand from developers to store more data and access it with lower latency and with
higher throughput. The performance and data capacity requirement is often combined with a
desire for flexible data access. These access patterns are application-specific but can range from
low-latency, high-throughput writes (including updates) for real-time data loading and
deduplication, to efficient batch loading and complex analytical queries over the same data.
Application developers have never demanded more from databases.

A common approach for tackling these requirements is to use a domain-specific database for
different components of an application. In contrast, we believe it is possible to design a database
that can take advantage of elastic cloud infrastructure while satisfying a breadth of requirements
for transactional and analytical workloads. There are many benefits for users in having a single
integrated, scalable database that handles several application types, including:

3

https://db-engines.com/en/ranking


Introduction to SingleStoreDB

—
● Reduced training requirements for developers
● Reduced need to move and transform data
● Reduction in the number of copies of data that must be stored and resulting reduction in

storage costs
● Reduced software license costs, and reduced hardware costs.

Furthermore, this enables modern workloads to provide interactive, real-time insights and
decision making, enabling both high-throughput low-latency writes and complex analytical queries
over constantly changing fresh data. Even more, it’s done with end-to-end latency of seconds to
sub-seconds from new data arriving to analytical results.

Adding incrementally more functionality to cover different use cases with a single distributed
DBMS leverages existing fundamental qualities that any distributed data management system
needs to provide. This yields more functionality per unit of engineering effort on the part of the
vendor, contributing to lower net costs for the customer. For example, specialized scale-out
systems for full-text search may need cluster management, transaction management, high
availability and disaster recovery — just like a scale-out relational system requires. Some
specialized systems may forgo some of these capabilities for expediency, compromising reliability.

At SingleStore we believe our design represents a good trade-off between efficiency and flexibility,
and can help simplify application development by avoiding complex data pipelines. In this
whitepaper we will discuss some of the key capabilities and uses for SingleStore.

What is SingleStoreDB?

SingleStoreDB is the cloud-native database built with speed and scale to power data-intensive
applications. SingleStore combines Hybrid Transactional/Analytical Processing (HTAP), ingest and
query performance, scalability and resiliency through self-managed clusters while handling all
installation-, operation- and management-related details. SingleStoreDB is designed and
architected to tolerate and recover from failures. To maintain each cluster’s high availability (HA),
SingleStoreDB runs on a highly resilient cloud infrastructure with high availability built in.

SingleStoreDB high-level features include:

● Cloud-agnostic deployments on Amazon Web Services (AWS), Google Cloud Platform
(GCP) and Microsoft Azure.

4



Introduction to SingleStoreDB

—
● Secure, with encryption of all data at rest, and TLS/SSL encryption for over-the-wire

connections to the cluster
● Automated infrastructure provisioning, configuration, elastic scaling, backups, hardware

maintenance and failure management, and upgrades
● Fully managed and resilient database-as-a-service with Universal Storage capabilities

What is SingleStoreDB Not For?

SingleStoreDB excels at real-time and high throughput query use cases. It is a great
database for data intensive applications, running both transactional and analytic
workloads. However, there are use cases which SingleStoreDB is not designed to run.
Some of these include:

● Data Lake. SingleStoreDB is not designed to be a data lake. It is designed for
high-value data that is structured or semi-structured and ready to query.
SingleStoreDB has open-source connectors for integrating with a variety of great
object stores, including Amazon S3 and Hadoop File System (HDFS).

● In-process database. SingleStoreDB is not run as a library or in-process with an
application. SingleStoreDB is a distributed database which runs in separate
processes from the application, and applications connect to SingleStoreDB via a
client driver.

● Very small scale data volumes. Single host SQL databases can deliver excellent
performance here because they don’t need the infrastructure to scale.

Core SingleStoreDB Technologies

Architecture
SingleStoreDB is a horizontally partitioned, shared-nothing fully managed Database-as-a-Service
which uses shared storage in the form of a blob store. A SingleStoreDB cluster is made up of
Nodes, which hold partitions of data and are responsible for query processing. Each Node holds
several partitions of data. Each partition is either a primary which can serve both reads and writes,
or a replica which can only serve reads and is used for HA.

5

https://www.singlestore.com/blog/memsql-singlestore-then-there-was-one/


Introduction to SingleStoreDB

—

Figure 1. Managed Services Architecture with SingleStore

Nodes
Nodes are responsible for storing data in partitions, moving data to and from the object store as
needed, executing query requests against local partitions and returning collected data. The
number of Nodes are configurable by architects and database administrators, since  they are
important to scale according to compute needs.

Figure 2. Managed Services Architecture:Nodes with SingleStore

6



Introduction to SingleStoreDB

—

Universal Storage

As a storage engine built for HTAP, SingleStoreDB table storage needs to work well in a wide range
of workloads. SingleStoreDB was originally designed with two separate table storage formats: an
in-memory skiplist-based rowstore and a disk-based columnstore. SingleStoreDB table storage
has evolved to a unified design, with the following goals:

Efficient for both OLTP and OLAP access

Choosing between rowstore and columnstore table formats can be a hard decision for system
architects. It requires the architect to know whether the access patterns of each table lean OLTP
or OLAP when developing applications. This is especially true for workloads having both OLTP and
OLAP aspects on the same tables, like real-time analytic use cases running analytics concurrently
with high-concurrency point reads and writes. In the past, some customers created a rowstore
table over the recent data to serve complex write workloads such as uniqueness enforcement,
along with a columnstore table storing the older data for efficient analytics. This was hard to
manage since it required the architect to implement processes to move rows as they age, and
combine the results between tables during reads.

The primary goal of building the SingleStoreDB Universal Storage table is to provide a unified
table type that works well both for OLTP and OLAP. This eliminates the burden on users to choose
the data layout suitable for their particular workload. Furthermore, data layouts used to serve
different access patterns should be integrated within one storage model, so the system doesn't
pick up the disadvantages of different data layouts when trying to replicate data across them.
Having one unified table type allows demanding HTAP workloads to work efficiently, without the
complexity of managing data movements across tables serving different parts of the workload —
or duplicating the entire dataset in multiple data layouts.

Tiered storage
The storage model is optimized for tiered storage delivered by cloud providers. Writes to the blob
storage (Cloud Object Store) are done as data files that are reasonably large in size (10s of MBs) to
minimize the cost and amortize the latency of the requests. Data files are also immutable,  allowing
easy caching of the files on local storage which minimizes reads from the blob storage.

7



Introduction to SingleStoreDB

—

Database Storage

SingleStoreDB stores data remotely in an object store (unlimited storage database) and
locally in nodes (both on disk and in-memory). When you deploy a cluster, the databases
will automatically use the remote object store without manual setup or configuration.

Cloud Object Store

AWS, Azure and GCP clusters use cloud object store to store databases. The use of a cloud
object store separates where data is stored (in an object store external to the
SingleStoreDB compute) from where the data is processed (in a SingleStoreDB compute
cluster). Because cloud object store databases are stored remotely, their size is not limited
by the size of the persistent cluster cache, but rather only by available external object
storage. On public cloud object stores, this is for all practical purposes unlimited.

In a cloud object store database:

● All columnstore data is stored externally in an object store. Additionally, recently
accessed columnstore data objects are cached locally in the compute cluster's
persistent cluster cache.

● All rowstore data is stored locally in compute cluster memory and externally in
object storage.

● Data updates made on the cluster are flushed to the object store asynchronously.
Typically, the object store will be no more than one minute behind the latest update
on the cluster.

When you run the CREATE DATABASE command on AWS, Azure and GCP clusters, it
automatically creates an unlimited storage database. BACKUP DATABASE and RESTORE
DATABASE commands can be used for database backup and restore respectively. Data
will be automatically restored into unlimited storage databases on AWS clusters.

8



Introduction to SingleStoreDB

—

Query Code Generation

SingleStoreDB also supports full query code generation targeting LLVM through
intermediate bytecode. LLVM compilation happens asynchronously while the query
begins running via a bytecode interpreter. The compiled LLVM code is hotswapped in
during query execution when compilation completes. Using native code generation to
execute queries reduces the instructions needed to run a query compared to the more
typical hand-built interpreters in other databases — it's worth the time to perfect it.

Compiled Queries and Query Plan Caching
Steps for query execution, code compilation and caching:

1. The client queries SingleStore.
2. SingleStoreDB generates a distributed query plan.
3. SingleStoreDB sends distributed queries to nodes.
4. Individual Nodes generate local plans for the distributed queries assigned to them
5. Query rewrite and parametrize (more below)
6. Hash the query text, version, variables, etc.
7. Check for existing plan
8. Optimize plan
9. Generate byte code

10. Concurrently run and compile the plan
a. Interpret the query from byte code; and
b. Compile the byte code to lower level machine language

11. Query Plan is cached
12. Nodes execute local queries.
13. Nodes return data to SingleStore.
14. SingleStoreDB gathers and merges data from the Nodes and returns data to the client

In step 5 “Query rewrite and parameterize”. Wildcards are replaced with explicit table names to
remove the need for the interpreter to do this. Values in the WHERE clause are parameterized so
similarly shaped queries with different values can reuse this compiled query — making the query
significantly more reusable.

In step 11 “Query plan is cached”. The query plan is cached on the node it was compiled and
executed on, and is stored both in-memory and on disk. The in-memory plan cache remains for 12

9



Introduction to SingleStoreDB

—
hours since last use, and the on-disk plan cache remains for two weeks since last use. Both plan
caches will be invalidated if the administrator runs the ANALYZE command and the statistics for
the data are off by a factor of two (double or half), or if the administrator issues the DROP
command for the query plan.

Code generation applies to all Data Manipulation Language (DML) queries. In addition,
SingleStoreDB generates code during CREATE TABLE and ALTER TABLE statements. These Data
Definition Language (DDL) queries generate code in order to reduce the compilation time of
subsequent DML queries against the table.

Separation of Storage and Compute

SingleStoreDB runs with access to a blob store for separated storage. When running with a blob
store, SingleStoreDB is different from systems that store all persistent data on the blob store and
only transient data on local storage. In S2MS, some data on local disks is the source of truth and
must be durably stored. This design allows SingleStoreDB to commit transactions to local disk
without the latency penalty of needing to write all the transaction data to blob storage to make it
durable. By treating blob storage truly as cold storage, SingleStoreDB is able to support
low-latency writes while still getting many of the benefits of separated storage (faster provisioning
and scaling, storing datasets bigger than local disk, cheaper historical storage for point in time
restores etc.). To understand how S2MS handles data durability in transactions, it’s important to
understand the role of local durability and blob storage.

Local durability is managed by the cluster on each partition using replication. The in-cluster
replication is fast and log pages can be replicated non-sequentially. Replicating non-sequentially
allows small transactions to commit without waiting for big transactions, ensuring that commits
have low and predictable latency. Data is considered committed when it is replicated in-memory
to at least one replica partition for every primary partition involved in a transaction. This means
the loss of a single node will never lose data, and if replication is configured across availability
zones, loss of an entire availability zone will never lose data. In on-premises implementations,
databases commonly commit to local disk but in cloud environments, the loss of a cloud host
means almost certain loss of local storage for that host as well.

Hash Partitioning
Tables are distributed across partitions by hash-partitioning of a user-configurable set of columns
called the shard key. This enables fast query execution for point reads and query shapes that do
not require moving data between nodes. When join conditions or group-by columns match their
referenced tables’ shard keys, SingleStoreDB pushes down execution to individual partitions

10



Introduction to SingleStoreDB

—
avoiding any data movement. Otherwise, SingleStoreDB redistributes data during query
execution, performed as a broadcast or reshuffle operation.

High Availability
SingleStoreDB maintains high availability (HA) by storing multiple replicas of each partition on
different nodes in the cluster. Data is replicated synchronously to the replicas as transactions
commit on the primary partitions. Read queries never run on HA replica partitions, they exist only
for durability and availability. HA replicas are hot copies of the data on the primary partition such
that a replica can pick up the query workload immediately after a failover without needing any
warm up.

SingleStoreDB also supports the creation of asynchronous replicas in different regions or data
centers for disaster recovery. These cross-region replicas can act as another layer of HA in the
event of a full region outage. They are queryable by read queries by default so can also be used to
scale out reads.

Limitless Point-in-Time Recovery
Point-in-Time Recovery (PITR) allows you to recover a database to a transaction-consistent state
at any point in time. This means that if a change causes any form of corruption, the database can be
returned to a consistent state the moment before the change (or corruption) started.
SingleStoreDB ensures all nodes in the cluster are valid and consistent after recovery.

Proper state is established by restoring the most recent snapshot before the intended
point-in-time, then playing the logs up to the desired restore point. Additionally, PITR requires no
additional software or specialized training and can be restored as many times as needed.

Attaching an unlimited storage database can be faster than restoring an equivalent local storage
database. This is because the attach of an unlimited storage database does not copy all data to the
cluster, as is the case with the restore of a local storage database. Note that after an unlimited
storage database is attached, queries may be slower for some time until remote data is cached
locally in the cluster.

A database can be restored to any point in time via the user portal, https://portal.singlestore.com.
PITR functionality is available in the Premium and Dedicated editions.

11

https://portal.singlestore.com


Introduction to SingleStoreDB

—

Conclusion
Modern enterprises require a data platform that is versatile, cost efficient and
performant. Not only does the data platform need to support and improve legacy
workloads, but also be able to deliver on new business requirements.

SingleStoreDB is the only cloud-native database with the speed and scale to power
today’s data-intensive applications, SingleStoreDB enables the world’s organizations to
adapt quickly and embrace diverse, modern data. One platform delivers real-time
analytics, eliminates performance bottlenecks and supports massive workloads — driving
limitless data experiences like never before.

SingleStoreDB allows for infrastructure convergence, simplicity and support for
predictive capabilities in a cost-effective and highly performant manner.

12


