

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Vector
Databases &

AI Applications
SingleStore Special Edition

by Akmal Chaudhri,
Arnaud Comet, Eric Hanson,

and Madhukar Kumar

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Vector Databases & AI Applications For Dummies®,
SingleStore Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2024 by John Wiley & Sons, Inc.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may
not be used without written permission. SingleStore and the SingleStore logo are registered
trademarks of SingleStore. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE
USED THEIR BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN
SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT THAT AN
ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER
AND AUTHORS ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR
PRODUCT MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH
THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING PROFESSIONAL
SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE. FURTHER,
READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED
OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.
NEITHER THE PUBLISHER NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/
custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

ISBN: 978-1-119-82340-7 (pbk); ISBN: 978-1-119-82341-4 (ebk). Some blank pages in the print
version may not be included in the ePDF version.

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the following:

Project Manager and Development
Editor:
Carrie Burchfield-Leighton

Sr. Managing Editor: Rev Mengle

Acquisitions Editor: Traci Martin

Client Account Manager:
Cynthia Tweed

http://www.wiley.com
http://www.wiley.com/go/permissions
http://Dummies.com
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents iii

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 1
Icons Used in This Book ... 1
Beyond the Book .. 2

CHAPTER 1: Understanding Vector Databases 3
Defining Vector Databases .. 3
Looking at the Three Key Steps for Vector Search 4
Listing the Key Criteria for Vector Databases 5
The Problem with Specialty Vector Databases 6

CHAPTER 2: Reimagining Data for AI ... 7
Managing Traditional Data .. 7
Using Contextual Data for AI .. 8

CHAPTER 3: Recognizing the Key Characteristics to
Support AI and Vector Workloads 11
Understanding Different Forms of Search 11
The Non-Negotiables of a Hybrid Search System 12

CHAPTER 4: Diving into SingleStoreDB ... 15
Introducing SingleStoreDB .. 16
Supporting Vectors ... 16
Getting Vectors into SingleStoreDB ... 17

Nearest-neighbor search in SQL ... 17
Hybrid nearest-neighbor/metadata vector search in SQL 18
Mixing full-text and vector search .. 18

CHAPTER 5: Looking into Agentic Apps and Their
Use Cases .. 21
Coding and Building Applications .. 22
Building Agentic Apps .. 22
Looking into Use Cases for Agentic Apps .. 23

CHAPTER 6: Building an Application with SingleStoreDB 25
Setting Up the Business Problem ... 25
Using an Example Solution ... 26

iv Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Building Your App ... 26
1. Generate a generic email template .. 26
2. Add ChatGPT ... 27
3. Customize email content with user behavior 28
4. Customize email content with documentation 30
5. Use SingleStoreDB .. 32

CHAPTER 7: Building a LangChain App with Vector
Databases .. 33
Setting up the Business Problem ... 34
Using an Example Solution ... 34
Building Your App ... 34

1. Create a database ... 35
2. Fill out the notebook .. 35
3. Read in a PDF document.. 35
4. Split the document into pages .. 36
5. Set your OpenAI API key .. 36
6. Use LangChain’s OpenAI embeddings 36
7. Store the text with the vector embeddings 37
8. Replace the <password> and <host> 37
9. Ask a question ... 37
10. Use ChatGPT to provide an answer...................................... 38
11. Review your output .. 38

CHAPTER 8:	 Ten	Tips	for	Building	AI Apps .. 39
Plan Ahead .. 40
Iterate Quickly ... 40
Use the Right Tokenization ... 40
Choose the Right Embedding Model ... 41
Pick the Right Data Model ... 41
Define the Embedding Size ... 42
Automate Your Pattern .. 42
Set Data Observability Standards... 43
Use Hybrid Full-Text/Vector Search when It Makes Sense 44
Refine and Reevaluate Your Model .. 44

Introduction 1

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

The rise of artificial intelligence (AI)-powered applications is
hard to ignore, and the importance of one technology is ris-
ing to the surface: vector databases. Vector databases are

essential to the foundation of ChatGPT-based chatbots and
AI-powered functions, including semantic search, image match-
ing and recognition, and vectorizations. Building chatbots and
other AI-based applications demands a lot from today’s vector
databases.

About This Book
In this book, we describe the current state of vector databases
and how users often turn to specialty databases for help, but that
actually introduces more complexity into their application archi-
tectures. We also introduce a viable technology, SingleStoreDB,
used for supporting AI and vector workloads. Along the way, you
discover a few use cases that show how organizations are getting
their desired results with this technology.

Icons Used in This Book
Throughout the book, we use certain icons to indicate special
information. The following describes what those icons mean.

The Tip icon indicates information you can apply to your own proj-
ects to make them work better with whatever technology you have
at hand. Tips can save you time and help you avoid frustration.

The Remember icon indicates information that’s worth retaining
after you’ve put down this book.

The Warning icon tells you that harm may result from an action
you take — whether that’s harm to a person, to equipment, to
stored data, or to your organization’s business situation.

2 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Beyond the Book
This book can introduce you to vector databases for ChatGPT and
show how you can make this vital database important for you. If
you want resources beyond what this book offers, here’s some
insight for you:

 » Selecting the Optimal Database for Generative AI is an e-book
from SingleStore that shows you how to evolve your data
strategies and existing data infrastructure to support AI
adoption in your business. Visit www.singlestore.com/
resources/ebook-selecting-the-optimal-database-
for-generative-ai.

 » Vectors on JSON is a video, from SingleStore principal
software engineer Jason Thorsness, that shows how to
power state-of-the-art semantic search for AI-based applica-
tions. For more information, head to www.youtube.com/
watch?v=wTgxJzNYPc4.

 » Beyond Vectors: How to Build a ChatGPT Super App is a
webinar, led by SingleStore global head of field engineering
Sarung Tripathi, that demonstrates generative AI and large
language models (LLM) capabilities for application develop-
ment and privacy and security in AI-powered applications.
Visit www.singlestore.com/resources/webinar-beyond-
vectors-how-to-build-a-chatgpt-super-app-07-2023.

https://www.singlestore.com/resources/ebook-selecting-the-optimal-database-for-generative-ai/
https://www.singlestore.com/resources/ebook-selecting-the-optimal-database-for-generative-ai/
https://www.singlestore.com/resources/ebook-selecting-the-optimal-database-for-generative-ai/
https://www.youtube.com/watch?v=wTgxJzNYPc4
https://www.youtube.com/watch?v=wTgxJzNYPc4
https://www.singlestore.com/resources/webinar-beyond-vectors-how-to-build-a-chatgpt-super-app-07-2023/
https://www.singlestore.com/resources/webinar-beyond-vectors-how-to-build-a-chatgpt-super-app-07-2023/

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Spelling out vector databases

 » Going through vector search

 » Calling out key traits of vector databases

 » Identifying issues with the SVDB

Understanding Vector
Databases

Everything about artificial intelligence (AI) continues to
explode — from the amount of AI applications introduced
every day to the ever-expanding capabilities of OpenAI’s

ChatGPT. But even within this overall explosion, hot spots still exist.
They’re marked by vector databases. Vector databases are a critical
component in building AI and ChatGPT-based applications and are
also where businesses run into some of their biggest challenges in
creating these applications (Chapters 5-8 cover apps in more detail).
Technical professionals, database architects, developers, and
organizations of all kinds succeed or fail based on how they use vec-
tor databases and their associated functions. Understanding what
vector databases are, and recognizing the key traits and features of
a vector database, can help you choose the tools and approaches you
need to meet these challenges where others fall short.

Defining Vector Databases
Vector databases provide the ability to store data in a numeri-
cal format. Imagine you have words like Boy, King, Prince, Prin-
cess, Queen, Girl, and Woman. A vector representation of each word
may be something like 2.12, 3.25, 2.34, 1.23. Each numerical

CHAPTER 1 Understanding Vector Databases 3

4 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

representation is similar to latitude and longitude coordinates
of that word to represent their location in a multi-dimensional
space (longitude and latitude are two-dimensional).

When a word or a piece of data (an image or a sentence or even
an entire paragraph) is converted into a vector representation, it
inherently has meaning associated with it by the virtue of the dis-
tance between each vector. For example, when the words Boy and
King are converted to vectors, they are inherently closer to each
other than the words Girl, Woman, or Princess.

The market for vector databases is exploding. The world’s largest
technology companies depend on these databases to achieve their
AI use cases. And most companies are increasingly dependent on
real-time applications, too. The reason why data is often con-
verted and stored as vectors is because it then enables software
and programs to do semantic search.

Looking at the Three Key Steps
for Vector Search

When vectorizing and searching data, three steps are involved:

1. Vectorize data.

Converting a word, sentence, paragraphs, audio, or even
images requires using transformer models. These are now
generally available through application programming
interface (API) calls. Some of the transformers are open
source and free, while others, like OpenAI, require paying a
small fee to convert data to a vector. The output of this step is
vectors that now need to be stored in a vector store or
database.

2. Store data.

After the data has been converted into vectors, it needs to be
stored in a database. Given that the vectors are in essence
numbers separated by commas, these can be stored in a
number of data types, including in a binary/BLOB storage.
During this step, vectors are also stored as indexes so they’re
faster to retrieve and search in the last step. There are a
number of different algorithms to create and store vectors as
indexes.

CHAPTER 1 Understanding Vector Databases 5

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

3. Perform a semantic search.

A semantic search over the vectors is carried out by using one
of the following algorithms:

• Cosine similarity: This involves measuring the angle
between two objects. The smaller the angle, the closer the
objects.

• Euclidean distance: This involves measuring the distance
between the two objects.

Check out Chapter 3 for more on these algorithms.

Listing the Key Criteria for
Vector Databases

Vector databases have five key criteria:

 » Vectorization capabilities: A crucial consideration is the
database’s ability to convert unstructured data into embed-
dings (vectors) to perform semantic search efficiently. Look
for databases with built-in vectorization classes or support
for external APIs that can handle vectorization.

 » Performance and scalability: The database should offer
high performance and low latency for vector searches.
Consider databases that can index vectors for fast similarity
searches, shard vectors for parallel processing, and hard-
ware optimizations such as single-instruction/multiple-data
(SIMD) processing to achieve fast and efficient matching.

 » Cost efficiency: Cost is an important factor when deploying
AI workloads. Evaluate the total cost of ownership (TCO),
including infrastructure, vector search costs, skills training,
and potential FinOps observability expenses.

 » Data access and integration: Ensure the database
supports natural language queries through natural language
processing (NLP), allowing end-users to leverage semantic
search capabilities. Look for integration with various
ecosystem components like MLOps capabilities, libraries for
generating embeddings, and modern applications that chain
multiple large language models (LLMs).

6 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Deployment, reliability, and security: Choose a database
deployment model based on your organization’s overall data
infrastructure strategy. Prioritize reliability by using sharding
and geo-distribution to improve fault tolerance and data
privacy. The database should also maintain data confidenti-
ality and implement role-based access control (RBAC) for
vector search and LLM API calls.

For more on vector characteristics, check out Chapter 4.

The Problem with Specialty
Vector Databases

Many specialty vector databases are for sale today, and they’re
good at one thing: vector similarity search. If you buy one of
these products and build it into your data architecture, you may
initially be excited about what you can do with it to query for
vector similarity. But eventually, you may regret bringing yet
another component into your application environment.

Vectors and vector search are a data type and query processing
approach, not a foundation for a new way of processing data.
Using a specialty vector database (SVDB) will lead to a bunch of
problems: redundant data, too much need to move data around,
distributed components not agreeing on data values, having to
pay more to employees for specialized skills, more software you
have to pay for, limited query language power, programmability
and extensibility, limited tool integration, and poor data integrity
and availability compared with a true DBMS.

Instead of using an SVDB, use a general, modern database
that meets all your database requirements, not just one. Some
general-purpose databases today, especially SingleStoreDB, have
vector search features. These can make it easier to develop your
whole application. For more information on the SingleStoreDB,
see Chapter 4.

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 2 Reimagining Data for AI 7

Chapter 2

IN THIS CHAPTER

 » Managing data types

 » Building a contextual data architecture
for generative AI

Reimagining Data for AI

Enterprises are tasked with managing various types of data.
Companies looking to take full advantage of generative AI
must look into the properties and requirements of contextual

data that’s critical for AI. In this chapter, we introduce the tradi-
tional data types and how you need to reimagine your data to
prepare yourself for the next wave of AI.

Managing Traditional Data
Over the years, two categories of data have emerged that enter-
prises have had to manage. The first is transactional data, typically
generated during a transaction and requires fast reads and writes
to the data store. An example of transactional data would be an
eCommerce website or an Airline flight booking app where every
piece of information has to be atomic, consistent, isolated, and
durable (ACID). This ACID property of a database must be main-
tained within a particular kind of database called the transactional
or online transaction processing (OLTP) database. Over time, as
the volume of the data becomes bigger and bigger, it becomes
inefficient and expensive to store in a transactional database. The
overhead of having vast volumes of transactional data leads to
latency and increased cost.

8 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The second category of data is analytical. Companies typically
move the data to either data warehouses or data lakes to coun-
ter the increased cost and inefficiency of managing large volumes
of transactional data. While data lakes are typically optimized for
storage, data warehouses are used for running analytics on top of
primarily static or slow-moving data. This kind of analytics data is
generally stored in a columnar format, which makes the data more
optimized for point-in-time analytics. These databases are usu-
ally called online analytical processing (OLAP) databases.

When it comes to large language models (LLMs), most of the
models have been trained on publicly available data available until
a point in time. For example, Open AI’s ChatGPT model has been
trained on data only available through September 2021.

These expiring LLMs are a challenge, especially for enterprises
with a vast amount of data either being generated extremely fast
through transactions or massive volumes of slow-moving data or
sitting in data lakes and warehouses.

Using Contextual Data for AI
Many companies are now adopting retrieval augmented gener-
ation (RAG) or in-context learning to provide content to LLMs
when the query is asked. This method uses a generative AI appli-
cation to shape the prompt in real time. Instead of retraining
LLMs or constantly fine-tuning each new model to achieve a spe-
cific behavior, highly curated data is provided as an intermediary
between the user prompt and the LLM. In this fast-moving world
of generative AI, the data now needs to be fresh — captured from
the latest streams of transactions — and should also have the
most similar data asked by the users and matched with a vast
corpus of data from the OLAP databases.

This data now falls under a third category called contextual data.
Take a look at a few properties of contextual data and the require-
ments of a contextual data store:

 » Data freshness: For generative AI applications to be current
with the context, first and foremost, the data that is fed to it
should be fresh. For example, a company may have a
product-related bug or issue that different customer support

CHAPTER 2 Reimagining Data for AI 9

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

representatives may be discussing simultaneously with other
customers. These conversations happen in real time, and a
solution may already exist in one or a few of those conversa-
tions. When contextual data is fed into an LLM, it needs the
latest transactional data. A contextual data store should be
able to take fast-moving transactional data relevant to a
query (in this case, all parallel real-time conversations about
the product issue) and use that for context. This requires
millisecond response times to ingest and query the data
using the hybrid technique of lexical and semantic search.

 » Multi-model data: The data that must be curated in real
time has various data types ranging from structured such
as SQL to JSON to binary data representing words, audio,
images, and video. A contextual database should be capable
of storing and retrieving all different data types with a high
throughput and low latency.

 » Real-time analytics: Curating data in real time also requires
analyzing data because queries need to be frequently
curated, and contextualized data requires aggregating,
grouping, or filtering data by averages, and so on. An
example query may look like this: “Give me the average
rating of movies by all users ages 25 to 35, and then show
me the last film they added to their favorites. Now do a
semantic search of those movies against language and
category and give me the top 2 results only.”

 » Hybrid search for curation: To contextualize all kinds of
data in real time, the data store and the retrieval mechanism
should include lexical and semantic search over different
data types. For example, the retrieval should include
conditions like greater than/less than/equal to a determinis-
tic dataset and a fuzzy meaning-based search based on
words that mean the same thing, such as canine and dog.

 » Semantic layer: The contextual data that needs to be fed to
generative AI models should be available for retrieval as an
application programming interface (API) layer and through
a natural language interface like English. This layer should
also handle data access entitlement and governance. For
example, because specific confidential data is now also
available as vector data, everyone shouldn’t be able to
access that information through an LLM response. A
representation of this is shown in Figure 2-1.

10 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In addition to the data storage and retrieval in real time, you also
need to consider how to address two categories of data within
contextual data:

 » Feedback of LLM response that gets re-contextualized

 » Storing synthetic data generated by LLMs

The feedback can be stored as a simple data structure. Still, data
rules within the company must be defined on how that data is re-
fed into the contextual data pipeline or archived and thrown out if
flagged by users as incorrect or even objectionable.

You can build a contextual data architecture by using several
technologies and tools, but more recently, a number of companies
have started to experiment with solutions like SingleStoreDB that
check all the boxes of managing and storing contextual data spe-
cifically for generative AI applications.

While many of the same data challenges and management best
practices still exist, companies must now consider how to effec-
tively manage contextual data for generative AI. Companies that
can do this in a cost-efficient and near-zero latency fashion would
be the only ones that can take full advantage of generative AI.

FIGURE 2-1: The contextual data layer.

CHAPTER 3 Recognizing the Key Characteristics to Support AI and Vector Workloads 11

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Looking into the different search forms

 » Understanding hybrid search system
must-haves

Recognizing the Key
Characteristics to
Support AI and Vector
Workloads

Hybrid search combines multiple search techniques or
algorithmsto improvetheeffectivenessandefficiencyof
informationretrieval.Itleveragesthestrengthsofdifferent

searchmethodsandintegratesthemintoaunifiedframework.It
alsoprovidesmoreaccurateandcomprehensivesearchresults.

Understanding Different Forms of Search
In a database context, a hybrid search system that combines
semantic search, full-text search, and analytics offers a com-
prehensive solution for information retrieval. Each component
serves a unique purpose:

 » Semantic search: This aspect allows the system to under-
stand the meaning and context of search terms. Instead of
simply returning entries that contain exact keyword

12 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

matches, a semantic search system tries to understand the
searcher’s intent and the meaning of the query to fetch more
relevant results. For instance, it can identify synonyms,
homonyms, and other linguistic nuances to deliver precise
answers. This is particularly useful when working with
unstructured data where the relationships between words
and their meanings are critical to understanding the content.

 » Full-text search: This technique searches text within a
collection of documents. A full-text search scours all the text
contained in each file to find matches. It’s most useful when
you need to identify the presence of terms without knowing
which document or where within a document the term may be.

 » Analytics: This aspect pertains to processing data to
discover useful information, suggest conclusions, and
support decision making. This can include a range of
statistical, predictive, and machine learning techniques to
understand patterns, trends, and relationships within data.
In the context of search, analytics could be used to rank
search results based on their relevance or to analyze user
search behavior to improve the search algorithm over time.
You should also consider the ability to apply clustering to
your data to help with dimensionality reduction on the
embeddings. This allows you to gain insights into the
structure of your document collection and understand
relationships between different documents.

Bycombining these threeaspects,ahybridsearchsystempro-
videspowerful,context-awaresearchcapabilitiesthatgobeyond
simplekeywordmatches.Itcanunderstandthecontentofboth
structuredandunstructureddata,interprettheintentofasearch
query,andleveragedataanalyticstocontinuallyimprovetherel-
evanceandaccuracyofthesearchresults.

The Non-Negotiables of a Hybrid
Search System

Whenlookingforadatabasetosupportahybridsearchsystem,
youwanttoconsiderthefollowing:

 » Multi-model support: Your data may be coming under
JSON form, so you may want to add a full-text search index

CHAPTER 3 Recognizing the Key Characteristics to Support AI and Vector Workloads 13

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

over a specific column, consider time as a variable in your
scoring (time-series), and of course get vector support for
running your matching algorithm.

 » Performance: A database should offer fast, uncompromised
performance for running complex, interactive queries over
large datasets — all while offering predictable response times.

• Ingestion: A database should efficiently handle ingestion
and vectorization. With semantic capabilities, it should
accurately process and categorize incoming data,
ensuring it’s stored in a way that makes sense and can be
queried effectively. The ability to run custom code or
stored procedures as data comes in is a key capability
you should consider.

• Query: A database that supports a combination of
semantic search, full-text search, and analytics can
optimize storage and improve performance. Because
these systems understand the meaning and relevance of
data, they can organize and index data more efficiently.
This speeds up query response times and reduces the
computational load when processing queries.

• Semantic search: Even though you may apply filtering,
you want to get sub-second response time when you run
hundreds if not thousands of concurrent semantic
searches.

 » Cost: Do not pay per embedding stored. This is a common
model among specialty vector databases (SVDB) that can be
costly (see Chapter 1 for more info). You should pay for the
compute needed to run hybrid searches, not to store
embeddings at rest.

 » Deployment, reliability, and security: You want a strong,
99.99 percent service-level agreement (SLA) for your
production workload that has a cloud-agnostic database and
also has security. If you don’t have fine grain-access control,
you’ll have to create one index/collection/table per use case.
There are embeddings that you’ll want to give access to for
specific customers, and some that will be across customers.
For network connectivity, make sure that the database you
pick is enterprise ready. As you operationalize your code and
pipelines, set the right mechanism for monitoring and
alerting through robust observability.

14 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Ecosystem integration: A database can’t do everything on
its own so make sure you have extensibility and integration
with a strong AI ecosystem. You should be able to quickly call
through external functions third-party endpoints to send or
get results from operations.

 » Developer experience: Enabling a variety of users to work
on a common system and avoid silos is important so find a
database that lets not only database architects (DBAs) but
also data scientists and machine learning engineers to work
together. That database should have a strong support for
SQL and Python and let users marry both languages
together with the least amount of code possible. You should
also look at the function that the database supports for
full-text, semantic search, and analytics. Having a breadth of
functions ensures that your product needs are fulfilled
without having too much work around.

While each of these considerations is important, they may
not all be important to you at the same time. Take a look at
Table 3-1.Thinkofthistableasascoringsheetfortechnology.
Youcanrateaproductfromeachcapabilityandhaveaweightfor
it —eventuallycompilingthesumandcomparinghowanyone
givenproductscoresagainstothers.

TABLE 3-1	 Technology Scorecard

Categories

Score
(1-10)

A

Weight (sum
to 6)

B

Weighted
Score

C = A x B

Multi-model Support 5 0.5 2.5

Performance

Cost

Deployment, Reliability, and
Security

Ecosystem Integration

Developer Experience

Total

CHAPTER 4 Diving into SingleStoreDB 15

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Explaining SingleStoreDB

 » Supporting vectors in SingleStoreDB

 » Inserting vectors in SingleStoreDB

Diving into
SingleStoreDB

Using a general-purpose structured query language (SQL)
database with vector capability can make your life easier
because it can perform vector search and many other

actions, such as filters, joins, sorts, and combined matching with
vector search and full-text search. You don’t have to buy extra
tools and move data around so much either.

To get started, use a general-purpose SQL DB with vector search,
rather than reaching for the shiny specialty vector database
(SVDB). (For issues with SVDBs, check out Chapter 1.) This chapter
introduces you to SingleStoreDB, which is a general-purpose
database cloud service with vector similarity search.

If you read through this chapter and want more informa-
tion, go to www.singlestore.com/cloud-trial. For tips
on working with vector data, see docs.singlestore.com/
cloud/developer-resources/functional-extensions/
working-with-vector-data.

https://www.singlestore.com/cloud-trial/
https://docs.singlestore.com/cloud/developer-resources/functional-extensions/working-with-vector-data/
https://docs.singlestore.com/cloud/developer-resources/functional-extensions/working-with-vector-data/
https://docs.singlestore.com/cloud/developer-resources/functional-extensions/working-with-vector-data/

16 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introducing SingleStoreDB
SingleStoreDB is a fast, scalable, modern SQL database manage-
ment system (DBMS) and cloud service that supports multiple
data models, including structured data, semi-structured data
based on JSON, time-series, full text, spatial, key-value, and
vector data. Its vector database subsystem, first made available in
2017, allows extremely fast nearest-neighbor search to easily find
objects that are a lot alike by using SQL.

With SingleStoreDB for vector search, you can create columns
of any data type, such as strings, numbers, dates, times, and
so on, plus vectors. Then, you can easily query your data with
filters, joins, sorts, and so on, which can be applied to any of those
columns.

SVDBs provide a special feature called metadata filtering for filter-
ing on other properties besides the vector data. A typical way they
do it is to put a JSON document next to each vector to have other
descriptive metadata about the vector. SVDBs give you a subset of
a MongoDB-style query language to filter with. This isn’t as pow-
erful or familiar as SQL.

SingleStoreDB for vector database management is great at vector-
based operations, and it’s a modern DBMS. Its benefits include
ANSI SQL, transactions, high availability, disaster recovery,
point-in-time recovery, programmability, extensibility, and the
list goes on. SingleStoreDB is fast and scalable, supporting both
high-performance transaction processing and analytics in one
scalable system. It can scale one database as big as you need by
splitting data tables up across multiple servers. You can treat it
just like a normal SQL database; your application doesn’t have to
know or care that the data is split across servers.

Supporting Vectors
A vector (as they relate to data and databases) are mathemati-
cal representations of features or attributes. SingleStoreDB sup-
ports vectors and vector similarity search using dot_product (for
cosine similarity) and euclidean_distance functions. People use
these functions for applications including face recognition, visual
product photo search and text-based semantic search. With the

CHAPTER 4 Diving into SingleStoreDB 17

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

explosion of generative artificial intelligence (AI) technology,
these features form a firm foundation for text-based AI chatbots.

The SingleStore vector database engine implements vector sim-
ilarity matching by using Intel single-instruction, multiple-data
(SIMD) instructions. These instructions can add or multiply eight
numbers in one instruction. That speeds up dot_product by a
factor of eight compared with a simple way of implementing it.

Getting Vectors into SingleStoreDB
To insert vectors into SingleStoreDB, you need to create a table
with BLOB-typed columns to store the vectors. You can use the
JSON_ARRAY_PACK function to easily insert properly formatted
vectors into the table. You can also insert vectors in binary format
directly from your application or by using UNHEX to convert hex
strings to binary.

Here’s a small vector example:

CREATE TABLE t (id int, v blob);
INSERT INTO t VALUES (1, JSON_ARRAY_PACK('[0.7,

0.2, 0.1]');

This example has only three dimensions. Real vectors for similar-
ity matching often have 64 to 2,000 dimensions. For example, for
semantic text search and chatbots, you can use OpenAI’s embed-
dings API. One of its popular vector formats has 1,536 elements.

For more information on JSON_ARRAY_PACK and UNHEX and for
a full set of vector functions available in SingleStoreDB, visit
docs.singlestore.com/cloud/reference/sql-reference/
vector-functions.

Nearest-neighbor search in SQL
Nearest-neighbor queries are used to find the closest objects to
any one given object. For example, a store locator for a retail store
often presents the closest available location to a customer con-
ducting a search. Nearest-neighbor search can be done in SQL in
SingleStoreDB with an ORDER BY/LIMIT query that uses vector
similarity functions to get a nearness metric to order by.

https://docs.singlestore.com/cloud/reference/sql-reference/vector-functions/
https://docs.singlestore.com/cloud/reference/sql-reference/vector-functions/

18 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You can do exact nearest-neighbor search on large data sets
with interactive response time with SingleStoreDB. This test
is explained at www.singlestore.com/blog/image-matching-
in-sql-with-singlestoredb.

Hybrid nearest-neighbor/metadata
vector search in SQL
Hybrid nearest-neighbor search predicts responses for new data
ingested based on how similar or related it is to other known
and available data. Hybrid search based on vector nearness and
descriptive properties is easy in SingleStoreDB because all the
query capabilities of SQL are available. For example, suppose you
have a table:

create table comments(id int, comment text, vector
blob,

 category varchar(64));

Suppose these are some available categories: “enthusiastic agree-
ment,” “agreement,” “neutral,” and “disagreement.” To find
the top 100 matches to a query vector @v (only considering cat-
egories that are about positive “agreement”) you can write this
SQL query:

select id, comment, category, dot_product(@v,
vector) as score

from comments
where category in ("agreement", "enthusiastic

agreement")
order by score desc
limit 100;

Mixing full-text and vector search
Sometimes you may want to mix full-text search and vector-
based semantic search, say to rank full-text search results by
a vector similarity score. That’s easy with a general-purpose
database like SingleStoreDB that has vector search and full-text
search features. It’s not so easy if you have to use an SVDB and a
separate full-text search engine.

https://www.singlestore.com/blog/image-matching-in-sql-with-singlestoredb/
https://www.singlestore.com/blog/image-matching-in-sql-with-singlestoredb/

CHAPTER 4 Diving into SingleStoreDB 19

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Here’s a quick code example of combined vector (semantic) and
full-text ranking in SingleStoreDB:

CREATE TABLE articles(
 id INT UNSIGNED,
 title VARCHAR(200),
 body TEXT,
 vector blob,
 tags VARCHAR(200),
 SORT KEY (id),
 FULLTEXT(title, body, tags)
);

WITH search_results AS (
 SELECT *,
 MATCH(title, body, tags) AGAINST
('search_terms') as match_score
 FROM articles
 WHERE MATCH(title, body, tags) AGAINST
('search_terms')

VECTOR JOINS
More sophisticated metadata filtering examples are possible using
joins, subqueries, and more. Because SingleStoreDB supports joins,
you can do set-based nearest-neighbor search. For example, you can
create a table:

create table query_text_blocks(id int, block text,
vector blob);

This may contain, say, ten text blocks of interest, and you want to
retrieve the top 50 matches for any of these in a single query. There’s
no need to write ten separate queries, one for each block. You can
use a join instead (in this case a cross join). For example:

select c.id, q.id, dot_product(c.vector, q.vector)
as score

from comments c, query_text_blocks q
order by score desc
limit 50;

20 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

),
reranked_results AS (
 SELECT *,
 DOT_PRODUCT(vector, @vector_to_compare) AS
similarity_score
 FROM search_results
)
SELECT *
FROM reranked_results
ORDER BY similarity_score DESC;

This query first retrieves the search results that match the
given term, and then it calculates the similarity score using
the dot_product function with a constant vector (derived from
the user’s question). Finally, the query orders the results based
on the similarity score.

CHAPTER 5 Looking into Agentic Apps and Their Use Cases 21

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

 » Writing apps

 » Defining agentic apps

 » Understanding the uses for agentic apps

Looking into Agentic
Apps and Their Use
Cases

When ChatGPT, a type of large language model (LLM),
was released in late 2022, people worldwide started
reporting how it was writing poems, responding to

deep philosophical questions, and even answering questions
related to archaic topics like law and medicine. But in the short
few months after its release, it made significant strides as more
people started using LLMs not only for generating text, stories,
poems, images, and videos but also to generate code or improve
existing applications.

In this chapter, you take a look at the process of coding and
building apps and the importance of agentic apps. We introduce
different use cases across various industries that significantly
improve the overall quality of human life.

22 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Coding and Building Applications
Traditionally, writing an application requires a team of prod-
uct managers, developers, designers, and engineers to work as
cohorts to do the following set of activities:

1. Collect and write requirements.

2. Write modular code.

3. Assemble and integrate different application parts.

4. Quality test the code.

5. Deploy the application to production and continuously
monitor, fix bugs, and add new features.

With LLMs, you not only can get generative AI to generate spe-
cific steps and code, but you can use application programming
interfaces (APIs) and databases to execute the code after AI has
generated it in a series of automated steps. These apps have a new
term: agentic applications.

In addition to building and running applications, agentic app use
cases have also started appearing in other spaces like marketing.
With the use of LLMs, you can generate new content based on
prompts, publish the content using APIs, and then drive traffic to
the content by posting on social media. Open-source libraries like
LangChain (see Chapter 7) have been crucial to building agentic
apps like these.

Building Agentic Apps
More and more tools are now becoming available to take the
responses from an ensemble of LLMs that can be chained together
programmatically to act on AI responses. Agentic apps have
far-reaching uses across different industries. To build an agen-
tic app, companies need a real-time contextual data store to take
incoming streaming data, match existing information, contex-
tualize the overall knowledge, and feed it into LLMs to develop
the most appropriate recommendations and steps. With the use of
APIs and automation, these steps can then be executed in a highly
automated fashion.

CHAPTER 5 Looking into Agentic Apps and Their Use Cases 23

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

To construct an agentic app, companies can start to think about
a stack that consists of three layers (that can mimic some human
behavior):

 » The data layer: A contextual data store can be used for
transacting, analyzing, and contextualizing data in real time
for LLMs to produce the right and contextualized responses.
Check out Chapter 2 for more information on contextual data.

 » The decision layer: This layer consists of libraries like
LangChain (see Chapter 7) that can chain together multiple
LLMs and use tools and agents to execute tasks. Using
LangChain can also help in understanding user queries,
knowing whether the responses are correct, and recalibrat-
ing and redoing actions based on fast-changing conditions.
The live feedback from users can then refeed into the data
store to fine-tune the contextual data.

 » The receptors and effectors: This layer is akin to human
senses that collect real-time information and then send it
to the data layer to be contextualized in real time and then
fed into LLMs.

Looking into Use Cases for Agentic Apps
Agentic apps can be used and applied across a variety of industries
and verticals:

 » Customer support: With agentic apps, some companies have
started to build chatbots that converse with customers and
users in real time and try and help them by searching the
company database with information based on users’ reported
issues and then searching and summarizing the solution for
them. When a solution isn’t found, the AI-powered chatbot
could use APIs to either open a support ticket or assign it to the
right engineer for help. Alternatively, it could even see and alert
the customer engineers on call through Slack and provide
real-time information to find a solution.

 » Financial services: Agentic apps can look at real-time credit
card transactions, use models to detect whether the
transaction is fraudulent, and take action to block suspicious
transactions. In addition, these apps can also notify the right
people to prevent future fraudulent transactions on the

24 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

same credit card. LLMs can also be used for investment
management by looking at real-time stock data and then
calling APIs to trade stock accordingly.

 » Retail: One of the use cases that several companies are
exploring is using agentic apps as personal shoppers. Based
on user preferences that can be fed in as prompts, an app
can get recommendations from LLMs, and then utilizing APIs
can search stores and online outlets to find the lowest price
and availability based on location and go as far as purchasing
on behalf of the customer. Taken a step further, any home
devices connected to the internet, a camera, or a home
appliance that’s constantly fed with real-time data can, in
turn, provide that data to the LLMs for recommended action
and then use APIs to act on the recommendation. For
example, a camera could match the face of the house owner
in front of the door and unlock the door or ask for a pass-
word challenge before automatically granting entry access.

 » Personal digital assistant/digital twin: While the possibili-
ties of use cases for agentic applications are unlimited, more
recently, companies have started to explore creating
personal digital assistants that could perform specific tasks
for a person based on the changing conditions in real time.
For example, a personal digital assistant with access to
calendar events, location, emails, and Slack can reschedule
meetings, create new appointments, reply to automated
emails, or even send text messages based on changing
real-time information such as a delayed flight or traffic
congestion leading to delayed arrival to an appointment.

 » Healthcare: In healthcare, LLMs can be used to search for
vaccines and solutions for non-life-threatening diagnoses
and act on recommendations like setting up medical
appointments, calling pharmacies, and even filing insurance
claims on behalf of patients as long as the authenticated
apps have access to the right resources through APIs.

 » Education: Within education, some private schools have
already started using highly customized learning plans based
on custom student needs and capabilities. This includes
building content based on constantly evolving student skills
as conditions change in real time. Educational institutions
can also dynamically alter evaluation tests, grade the tests,
and notify educators of the student’s progress on a highly
automated and real-time basis.

CHAPTER 6 Building an Application with SingleStoreDB 25

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

 » Setting up the problem and solution

 » Breaking down the steps of building
an app

Building an Application
with SingleStoreDB

SSingleStoreDB is a verstaile, multi-model database system
that enables consolidation of multiple database systems into
one to improve total cost of ownership (TCO) and streamline

developer workflows. Check out Chapter 4 for a deeper dive into
SingleStoreDB.

In this chapter, we give you an example build of an app using
SingleStoreDB. This example shows you how SingleStoreDB can
revolutionize email campaigns for a web analytics company by
enabling personalized and targeted email content.

Setting Up the Business Problem
Say you own a web analytics company and rely on email cam-
paigns to engage with customers. However, your generic approach
is failing to capitalize on potential business opportunities. To
address this, you want to leverage ChatGPT to create more per-
sonalized email messages. Additionally, you have user behavior
data stored in MongoDB and valuable documentation in Pinecone.
Managing these disparate databases has become cumbersome,
prompting the need for a comprehensive solution.

26 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Using an Example Solution
You choose SingleStoreDB because it supports various data for-
mats like JSON — as well as vector functions — and works easily
with ChatGPT.

This example application uses ChatGPT to generate unique emails
for your customers. To help ChatGPT learn how to target your
customers, you use a number of well-known analytics companies
as learning material for ChatGPT. You further customize the con-
tent based on user behavior, different stages of which are stored
in MongoDB. To help each user complete the current stage of
behavior, you direct them to documentation stored in Pinecone.
The user behavior and documentation allow ChatGPT to generate
personalized emails. Finally, you consolidate the data stored in
MongoDB and Pinecone by using SingleStoreDB.

Building Your App
Through the practical demonstration we show you in this sec-
tion, SingleStoreDB transforms email campaigns for the better.
Its multi-model capabilities, combined with AI-driven personal-
ization, provide a comprehensive solution for consolidating data-
bases and improving customer engagement. With SingleStoreDB
as a single source of truth, you not only simplify your workflows
but also ensure that your email campaigns deliver maximum
impact and value to your customers.

In this section, we take you through the steps of building an app
with SingleStoreDB.

1. Generate a generic email template
Start by generating generic email templates and then use Chat-
GPT to transform them into personalized messages for each cus-
tomer. By doing that, you can address each recipient by name and
introduce them to the benefits of your web analytics platform.

To generate a generic email, use the following code:

people = ["Alice", "Bob", "Charlie", "David",
"Emma"]

for person in people:

CHAPTER 6 Building an Application with SingleStoreDB 27

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 message = f"Hey {person},\n Check out our web
analytics platform; it's Awesome! It's perfect for
your needs. Buy it now!\n - Marketer John"
 print(message)

There is a list, called people, and a loop is used to iterate over
this list. The person placeholder in the loop is replaced with the
name of each person in the list. For example, with the placehold-
ers filled in, recipient Alice sees the following message:

Hey Alice,
 Check out our web analytics platform; it's

Awesome! It's perfect for your needs. Buy it now!
 - Marketer John

Other users — Bob, Charlie, David, Emma — receive the same
message but with their names filled in.

2. Add ChatGPT
You can easily bring ChatGPT into your application by providing it
with a role and giving it some information, as follows:

system = 'You are a helpful assistant. My name is
Marketer John. You help write the body of an
email for a fictitious company called "Awesome
Web Analytics." This is a web analytics company
that is similar to the top 5 web analytics
companies (Perform a web search to determine
current top 5 web analytics companies). The goal
is to write a custom email to users to get them
to be interested in our services. The email
should be less than 150 words. Address the user
by name. End with my signature.'

Looping through the list of users and calling ChatGPT produces
unique emails. For example, this is what Alice might see:

Hi Alice,

I hope this email finds you well. I wanted to

reach out and introduce you to Awesome Web
Analytics, a leading web analytics company.

28 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In today's digital age, understanding your
website's data is crucial for success. With our
advanced analytics tools, we can help you gain
valuable insights into your website's
performance, user behavior, and conversion
rates.

Our team of experts will provide you with

comprehensive reports and recommendations to
optimize your website and drive more traffic and
sales. Whether you're a small business or a large
enterprise, we have the right solution for you.

I would love to schedule a call or meeting to

discuss how Awesome Web Analytics can help your
business grow. Please let me know a convenient
time for you, and I'll be happy to accommodate.

Looking forward to hearing from you soon.

Best regards,

Marketer John

Awesome Web Analytics

Equally unique emails are generated for the other users.

3. Customize email content with
user behavior
By categorizing users based on their behavior stages, you can
further customize email content to align with their specific
needs. ChatGPT assists in crafting emails that encourage users to
progress through different stages. There are a number of user
behavior stages:

stages = [
 "getting started",
 "generating a tracking code",
 "adding tracking to your website",

CHAPTER 6 Building an Application with SingleStoreDB 29

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 "real-time analytics",
 "conversion tracking",
 "funnels",
 "user segmentation",
 "custom event tracking",
 "data export",
 "dashboard customization"
]

The user data and stages are in MongoDB with a record structure
similar to the following:

{
 '_id': ObjectId('64afb3fda9295d8421e7a19f'),
 'first_name': 'James',
 'last_name': 'Villanueva',
 'company_name': 'Foley-Turner',
 'stage': 'generating a tracking code',
 'created_date': datetime.datetime(2023, 6,
26, 0, 0)
}

Use the stages data and ask ChatGPT to further customize the
email:

system = 'You are a helpful assistant, who works
for me, Marketer John at Awesome Web Analytics.
You help write the body of an email for a
fictitious company called "Awesome Web
Analytics." We are a web analytics company that
is similar to the top 5 web analytics companies
(Perform a web search to determine current top 5
web analytics companies). We have users that are
at various stages of the pipeline of using our
product and we want to send them helpful emails
to get them to use our product more. Please
write an email for {} who is on stage {} of the
on-boarding process. The next stage is {}.
Ensure that the email describes the benefits of
moving to the next stage. Limit the email to 1
paragraph. End email with my signature.'.format
(fname, stage, next_stage)

30 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The generated email for a specific person, James, then looks
like this:

Hi James,

I hope you're doing well! I wanted to reach out

and remind you about the next stage in our
on-boarding process: adding tracking to your
website. By adding our tracking code to your
website, you'll be able to gain valuable
insights into your website's performance, track
user behavior, and make data-driven decisions to
improve your online presence. This step is
crucial in unlocking the full potential of our
web analytics tools and maximizing the benefits
they can bring to your business. If you have any
questions or need assistance with the tracking
code implementation, please don't hesitate to
reach out.

Thanks,

Marketer John

Awesome Web Analytics

4. Customize email content with
documentation
To support user progress, you want to leverage Pinecone’s vector
embeddings, which directs users to relevant documentation for
each stage. These embeddings make it effortless to guide users
toward essential resources and further enhance their interactions
with your product. By using the data about documentation, you
can ask ChatGPT to further customize the email, as follows:

system = 'You are a helpful assistant. I am
Marketer John at Awesome Web Analytics. We are
similar to the current top web analytics
companies. We have users that are at various
stages in using our product and we want to send

CHAPTER 6 Building an Application with SingleStoreDB 31

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

them helpful emails to get them to use our
product more. Write an email for {} who is on
stage {} of the on-boarding process. The next
stage is {}. Ensure the email describes the
benefits of moving to the next stage, then
always share this link: https://github.com/
singlestore-labs/webinar-code-examples/blob/
main/mktg-email-flow/docs/{}.md . Limit the
email to 1 paragraph. End email with my
signature "Best Regards, \n Marketer John.'
.format(fname, stage, next_stage['stage'],
next_permalink)

For example, here is an email generated for Bob:

Hi Bob,

I hope you're doing well! I wanted to reach out

and congratulate you on successfully adding
tracking to your website. This is a crucial step
in understanding your website's performance and
user behavior.

Now, I want to introduce you to the next stage in

our onboarding process: real-time analytics. By
moving to real-time analytics, you'll be able to
access up-to-the-minute data and insights about
your website's performance. This will enable you
to make faster and more informed decisions to
optimize your website and improve user
experience.

To learn more about the benefits of real-time

analytics and how to implement it, I recommend
checking out this link: https://github.com/
singlestore-labs/webinar-code-examples/blob/
main/mktg-email-flow/docs/real-time-analytics.md

If you have any questions or need further

assistance, feel free to reach out to me.

32 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Best Regards,

Marketer John

Awesome Web Analytics

You’ve refined the generic template and developed a targeted
email.

5. Use SingleStoreDB
Instead of managing separate database systems, you can stream-
line your operations by using SingleStoreDB. With its support for
JSON, text, and vector embeddings, you can efficiently store all
necessary data in one place.

You can ingest the data from MongoDB by using a pipeline. A Sin-
gleStore pipeline is a feature that continuously loads data as it
arrives from external sources. Follow this code:

CREATE LINK mongo AS MONGODB
CONFIG '{"mongodb.hosts":"<hosts>",
 "collection.include.list":"<collection>",
 "mongodb.ssl.enabled":"true",
 "mongodb.authsource":"admin",
 "mongodb.members.auto.discover":"false"}'
CREDENTIALS '{"mongodb.user":"admin",
 "mongodb.password":"<password>"}';

A SingleStoreDB database table will be automatically created
from the pipeline. The documentation can be easily loaded into
SingleStoreDB and the vector embeddings created by using Ope-
nAI. SingleStore provides several methods for fast loading data
into SingleStoreDB. You now have both sets of data managed by
SingleStoreDB and the same email (the one you sent in section “4.
Customize email content with documentation”) can be generated.

CHAPTER 7 Building a LangChain App with Vector Databases 33

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 7

IN THIS CHAPTER

 » Setting up the problem and solution

 » Breaking down the steps of building a
LangChain app

Building a LangChain
App with Vector
Databases

LangChain is a software development framework designed to
simplify the creation of agentic applications that use large
language models (LLMs). LangChain provides a set of stan-

dard interfaces and components that can be used to compose
different LLMs and other tools into complete applications. It is
easy to customize these applications to meet specific needs, such
as generating responses to user queries and question/answering
systems. Check out Chapter 5 for more about application creation
and agentic apps.

In this chapter, we set up a business problem and an example
solution to demonstrate how to use LangChain. For the processes
in this chapter, we use SingleStoreDB as the database.

34 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Setting up the Business Problem
Say you have PDF documents that you need to store in a data-
base system for historical and legal reasons. You also need to
query these documents for information and possibly check for
anomalies and inconsistencies. Currently, you use optical char-
acter recognition (OCR) to capture the information in your PDF
documents, but using OCR has proved to be unreliable at times
and adds some complexity to your workflow. You want to simplify
the process, introduce additional automation, and add artificial
intelligence (AI) to assist in your workflow.

Using an Example Solution
You choose LangChain due to its ability to process PDF documents
and store them in a vector database through its integrations. You
also use SingleStoreDB because it has multi-model capabilities
that has included support for vector data. You want to perform a
simple test to determine the ease with which you can use Lang-
Chain with SingleStoreDB to store and query a PDF document.

In this example application, you store the contents of a PDF
document in SingleStoreDB using LangChain. In this role,
SingleStoreDB acts as a vector store and saves both the contents
of the PDF document and the vector embeddings. These vec-
tor embeddings are generated by OpenAI. The PDF document
doesn’t contain any sensitive information, so using a third-party
is acceptable. You then ask ChatGPT a question related to the
contents of the PDF document.

Building Your App
LangChain integration provides a simple and powerful solution.
You don’t have to write any SQL statements for storing the con-
tents of a PDF document, and the framework abstracts the data-
base access, allowing you to focus on the business problem and
providing a compelling, time-saving solution.

In this section, we take you through the steps of creating a Lang-
Chain app.

CHAPTER 7 Building a LangChain App with Vector Databases 35

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

1. Create a database
You use the SQL editor in the SingleStoreDB Cloud environment to
create a new database. Use the following code:

CREATE DATABASE IF NOT EXISTS pdf_db;

2. Fill out the notebook
To use the SingleStoreDB notebook environment to demonstrate
the integration with LangChain, you start with a new blank note-
book and import some libraries, using the following code:

!pip install langchain --quiet
!pip install openai --quiet
!pip install singlestoredb --quiet
!pip install tiktoken --quiet
!pip install unstructured --quiet

3. Read in a PDF document
Next, you read in the PDF document. This is an article by Neal
Leavitt titled “Whatever Happened to Object-Oriented Data-
bases?” Object-Oriented Databases (OODBs) were an emerging
technology during the late 1980s and early 1990s. You add the
URL (leavcom.com) where the article is hosted to the firewall by
selecting Edit Firewall. After the address has been added to the
firewall, you read the PDF file:

from langchain.document_loaders import
OnlinePDFLoader

¶
loader = OnlinePDFLoader("http://leavcom.com/pdf/

DBpdf.pdf")
data = loader.load()

You can use LangChain’s OnlinePDFLoader, which makes reading
a PDF file easier. After that, you get data on the document:

from langchain.text_splitter import
RecursiveCharacterTextSplitter

¶

http://leavcom.com

36 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

print (f"You have {len(data)} document(s) in your
data")

print (f"There are {len(data[0].page_content)}
characters in your document")

The output should be

You have 1 document(s) in your data
There are 13040 characters in your document

4. Split the document into pages
You now split the document into pages containing 2,000 charac-
ters each:

text_splitter =
RecursiveCharacterTextSplitter(chunk_size = 2000,
chunk_overlap = 0)

texts = text_splitter.split_documents(data)
¶
print (f"You have {len(texts)} pages")

5. Set your OpenAI API key
Set your OpenAI API key by using the following code:

import os
import getpass
os.environ["OPENAI_API_KEY"] =

getpass.getpass("OpenAI API Key:")

6. Use LangChain’s OpenAI embeddings
Use LangChain’s OpenAI embeddings to generate the vectors that
can be used to query the document:

from langchain.embeddings import OpenAIEmbeddings
¶
embedder = OpenAIEmbeddings()

CHAPTER 7 Building a LangChain App with Vector Databases 37

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

7. Store the text with the vector
embeddings
Now you store the text with the vector embeddings in the data-
base system. Follow this code:

from langchain.vectorstores import SingleStoreDB
¶
os.environ["SINGLESTOREDB_URL"] =

"admin:<password>@<host>:3306/pdf_db"
¶
docsearch = SingleStoreDB.from_documents(
 texts,
 embedder,
 table_name = "pdf_docs",
)

8. Replace the <password> and <host>
You replace the <password> and <host> with the values from your
SingleStoreDB Cloud account.

Other than creating the database, no SQL code is required in the
process of storing the text and vector embeddings. The table
pdf_docs is also created for you if it doesn’t exist. LangChain
abstracts the lower-level details for you, which means that your
time and effort can be spent focusing on the business problem
instead of worrying about how to store and retrieve the data.

9. Ask a question
You can now ask a question, as follows:

query_text = "Will object-oriented databases be
commercially successful?"

¶
docs = docsearch.similarity_search(query_text)
¶
print(docs[0].page_content)

The integration again shows its power and ease of use through
the simplicity of asking the question and performing the simi-
larity search.

38 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

10. Use ChatGPT to provide an answer
Finally, you can use ChatGPT to provide an answer, based on the
earlier question:

import openai
¶
prompt = f"The user asked: {query_text}. The most

similar text from the document is:
{docs[0].page_content}"

¶
response = openai.ChatCompletion.create(
 model="gpt-3.5-turbo",
 messages=[
 {"role": "system", "content": "You are a

helpful assistant."},
 {"role": "user", "content": prompt}
]
)
¶
print(response['choices'][0]['message']['content'])

11. Review your output
Here is some example output:

While object-oriented databases are still in use
and have solid niche markets, they have not
gained as much commercial success as relational
databases. Observers previously anticipated that
OO databases would surpass relational databases,
especially with the emergence of multimedia data
on the internet, but this prediction did not
come to fruition. However, OO databases continue
to be used in specific fields, such as CAD and
telecommunications. Experts have varying
opinions on the future of OO databases, with
some predicting further decline and others
seeing potential growth.

CHAPTER 8 Ten Tips for Building AI Apps 39

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 8

IN THIS CHAPTER

 » Planning ahead

 » Having the right embedding model

 » Working with automation

 » Refining your model

Ten Tips for Building
AI Apps

W
hen building a data pipeline feeding your generative AI
app, you’ll encounter a simple flow of considerations:

 » Data (for example, text): Which data? Token/chunk size?
How often do I ingest? Does it need to be real time?

 » Model for embedding: Find the right model for my use
case. Pick an open source or a proprietary model.

 » Contextualized data: Enrich my data with context, tags,
metrics, and clustering for facilitating hybrid search.

 » Serve data: What questions will you be answering? What
other tools or LLM models will it connect to?

This flow is similar to traditional data engineering and business
intelligence (BI) but has far more complexity. In this chapter, we
give you tips for building your AI applications.

40 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Plan Ahead
Clearly write your plan for your generative AI. Without clarity, you
could create embeddings on the wrong set of data and use inaccu-
rate models. Spend time on your architecture diagram and what
scenario you’ll solve for your end-user. You should also know
what data sources you need to integrate, the psuedo query you
plan on serving end-users, the context you need to add (meta-
data and metrics), and which steps and data requires real time
(milliseconds-seconds), microbatch (minute), or batch (hours/day).

Iterate Quickly
You need to iterate constantly to improve your model so make sure
you have a setup that helps you quickly prototype, iterate, test,
and operationalize your improvements by following these tips:

 » Iterate on a small scale. Don’t create 100 million embed-
dings without knowing if you have used the right model,
embedding size, or even chunk of text. Creating embeddings
can take time and costs a lot of money (especially if you use
a database that charges per embedding).

 » Use the right tooling. Use notebooks for iterating quickly
because you can collaborate, document, and iterate on your
findings. Installing libraries is also simple through Python.

 » Make sure to build dev codes that can easily be ported
to your operational pipelines. You don’t want to make
changes between your dev code and production code that
may be running or hosted in a different environment.

 » Start defining your unit and integration tests. Quickly see
if you’ve improved or degraded the end-user experience.

Use the Right Tokenization
Tokenization is the process of dividing text into smaller units
called tokens, which can be words, phrases, subwords, or charac-
ters. It’s an essential step in the text preprocessing pipeline for

CHAPTER 8 Ten Tips for Building AI Apps 41

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

transformer models and plays a crucial role in the overall perfor-
mance of the model.

Use subword-level tokenization to capture both the meaning of
individual words and the relationships between subword units
within words. It’s the best trade-off of character-level tokeniza-
tion and the simplicity of word-level tokenization. Discover more
at www.tensorflow.org/text/guide/subwords_tokenizer.

Choose the Right Embedding Model
As you get a flow of chunks of texts, the choice of the right embed-
ding model is key, and you may want to consider different models
for the same chunk of texts because some models may provide
better results in some cases than other models.

As models continue to improve, be sure to build with flexibility —
no matter which model you use — so you can continue to direct
it based on the context of your queries to your chosen, specific
model. This allows you to continuously get better results.

We recommend the following models for creating embeddings:

 » Multi-qa-dot sbert model (especially all-mpnet-base-v1):
huggingface.co/sentence-transformers/
multi-qa-mpnet-base-dot-v1

 » Text-embedding-ada-002 from Open AI: platform.
openai.com/docs/guides/embeddings

 » Google embedding models: cloud.google.com/vertex-
ai/docs/generative-ai/model-reference/
text-embeddings

Pick the Right Data Model
Keep your table for the chosen model with text intact. This is your
raw data source, and you want to protect it. You can find the same
pattern as in a data warehouse where you don’t want your end-
users to access your raw tables.

https://www.tensorflow.org/text/guide/subwords_tokenizer.
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text-embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text-embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text-embeddings

42 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table 8-1 is an example with embeddings that are linked to the
source table with the chunk of texts through the same primary
key (ID). In this example, you have all your models in the same
table for the same text ID. Another pattern can be to have each
embedding model have its own table.

The key here is to not alter your raw text table with new columns
and embeddings. Note that such a model is only possible with
general purpose databases that store embeddings as one simple
column with a data type vector or blob.

Define the Embedding Size
The embedding size determines the dimensionality of the vec-
tors. A larger embedding size captures more information about
the categories, but it also increases the number of parameters in
the model and can lead to overfitting. A smaller embedding size
saves memory and computation, but it may not capture enough
information about the categories.

The size of your embeddings correlates to the size of your tokens.
Generally, the embedding size should be between the square root
and the cube root of the number of categories. If you have 1,000
different categories within your tokens, you want a size of 30 to
40 for your embeddings.

Automate Your Pattern
As you know your use case and if a specific pipeline needs to
always be updated, you want to use the right operational model to
automate your code at scale. Generally, you make changes in real
time, micro-batches, or batches:

TABLE 8-1	 Table with Embedding Model
ID Embedding 1 Model 1 Embedding 2 Model 2

1 [1,2,3,4] all-MiniLM-
L6-v2

[1,4,3,6] text-embedding-
ada-002

CHAPTER 8 Ten Tips for Building AI Apps 43

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Real time: Use Kafka + ETL Stream processing. If you want to
create embeddings for chunks of text on the fly, you need to
host it through Kafka and a tool that can process the
information where the data lands. At large scale, calling
external services such as OpenAI may lead to failure of
embedding creation with one at a time. Housing that
embedding model, collocated to data ingestion should be
preferred for large scale scenarios.

 » Micro-batches: For this use case, data is required to be
ingested and transformed in minutes. We recommend, for
such use cases and if scale allows, to use a lambda architec-
ture where data will be processed in small batches based on
triggers or time intervals. Such architectures are extremely
beneficial if you can break down your pipelines in small
functions that operate on small sets of data and in parallel. If
the pipelines are too heavy for a serverless architecture,
consider the following:

• Shortening the intervals when the pipeline is run

• Parallelizing the runs based on rules and filters

• Using a container service such as in batches

 » Batches: If you look to make changes every hour to once a
day at a large scale, use a job service that runs workloads as
a job. This update involves the use of a container.

Set Data Observability Standards
As you operationalize your data, make sure your data is accurate
end to end and ensure that you can

 » Establish a lineage of your data flow and pipeline.

 » Get an alert when a failure happens at the pipeline infra-
structure level.

 » Get an alert when a failure happens within the transforma-
tion of your data. For example, you might get embedding
creation failures of your token because they are too large.

This pattern is the same as the one in data engineering.

44 Vector Databases & AI Applications For Dummies, SingleStore Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Use Hybrid Full-Text/Vector Search
when It Makes Sense

Sometimes you want to give higher priority to documents or chunks
that contain keywords present in your search query, regardless of
semantic matches you find with vectors. When this is important,
use both full-text and vector search and combine the scores of
each as appropriate for your application. This process is known as
hybrid search. Check out Chapter 3 for more about the components
of hybrid search. You can also discover more at docs.singlestore.
com/cloud/developer-resources/functional-extensions/
working-with-vector-data/#hybrid-search.

Refine and Reevaluate Your Model
AI models and technologies are constantly evolving. What works
well today may not be the best solution tomorrow. Therefore, it’s
important to establish a process of continuous refinement and re-
evaluation of your models. You can achieve this by

 » Regularly monitoring the performance of your embedding
models, tokenization methods, and overall pipeline

 » Keeping track of the accuracy, efficiency, and relevance of
the embeddings being generated

 » Staying updated on the latest advancements in AI and
natural language processing (NLP) techniques, as well as
improvements in pre-trained models

When you notice that improvements or better-performing models
become available, be prepared to adapt and integrate them into
your workflow. Gather feedback from end-users and stakeholders
about the quality of search results, user experience, and any pain
points they may encounter. This information provides valuable
insights into areas that need improvement or adjustment.

By maintaining a good mindset of continuous improvement, you
can ensure that your generative AI scenario remains effective,
up-to-date, and aligned with the ever-changing landscape of AI
technologies and user needs.

https://docs.singlestore.com/cloud/developer-resources/functional-extensions/working-with-vector-data/#hybrid-search
https://docs.singlestore.com/cloud/developer-resources/functional-extensions/working-with-vector-data/#hybrid-search
https://docs.singlestore.com/cloud/developer-resources/functional-extensions/working-with-vector-data/#hybrid-search

http://singlestore.com

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book

	Chapter 1 Understanding Vector Databases
	Defining Vector Databases
	Looking at the Three Key Steps for Vector Search
	Listing the Key Criteria for Vector Databases
	The Problem with Specialty Vector Databases

	Chapter 2 Reimagining Data for AI
	Managing Traditional Data
	Using Contextual Data for AI

	Chapter 3 Recognizing the Key Characteristics to Support AI and Vector Workloads
	Understanding Different Forms of Search
	The Non-Negotiables of a Hybrid Search System

	Chapter 4 Diving into SingleStoreDB
	Introducing SingleStoreDB
	Supporting Vectors
	Getting Vectors into SingleStoreDB
	Nearest-neighbor search in SQL
	Hybrid nearest-neighbor/metadata vector search in SQL
	Mixing full-text and vector search

	Chapter 5 Looking into Agentic Apps and Their Use Cases
	Coding and Building Applications
	Building Agentic Apps
	Looking into Use Cases for Agentic Apps

	Chapter 6 Building an Application with SingleStoreDB
	Setting Up the Business Problem
	Using an Example Solution
	Building Your App
	1. Generate a generic email template
	2. Add ChatGPT
	3. Customize email content with user behavior
	4. Customize email content with documentation
	5. Use SingleStoreDB

	Chapter 7 Building a LangChain App with Vector Databases
	Setting up the Business Problem
	Using an Example Solution
	Building Your App
	1. Create a database
	2. Fill out the notebook
	3. Read in a PDF document
	4. Split the document into pages
	5. Set your OpenAI API key
	6. Use LangChain’s OpenAI embeddings
	7. Store the text with the vector embeddings
	8. Replace the <password> and <host>
	9. Ask a question
	10. Use ChatGPT to provide an answer
	11. Review your output

	Chapter 8 Ten Tips for Building AI Apps
	Plan Ahead
	Iterate Quickly
	Use the Right Tokenization
	Choose the Right Embedding Model
	Pick the Right Data Model
	Define the Embedding Size
	Automate Your Pattern
	Set Data Observability Standards
	Use Hybrid Full-Text/Vector Search when It Makes Sense
	Refine and Reevaluate Your Model

	EULA

