
Cloud-Native Transactions and Analytics in SingleStore 

Adam Prout, Szu-Po Wang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen, Evan Bergeron, 
Eric Hanson, Robert Walzer, Rodrigo Gomes, Nikita Shamgunov 

 SingleStore 
 {adam,szupo,joseph,zhou,eli,jack,evan,hanson,rob,rodrigo,nikita}@singlestore.com 

ABSTRACT 

The last decade has seen a remarkable rise in specialized 
database systems. Systems for transaction processing, data 
warehousing, time series analysis, full-text search, data lakes, in-
memory caching, document storage, queuing, graph processing, 
and geo-replicated operational workloads are now available to 
developers. A belief has taken hold that a single general-purpose 
database is not capable of running varied workloads at a 
reasonable cost with strong performance, at the level of scale 
and concurrency people demand today. There is value in 
specialization, but the complexity and cost of using multiple 
specialized systems in a single application environment is 
becoming apparent. This realization is driving developers and IT 
decision makers to seek databases capable of powering a broader 
set of use cases when looking to adopt a new database. Hybrid 
transaction and analytical (HTAP) databases have been 
developed to try to tame some of this chaos.  
In this paper we introduce SinglestoreDB (S2DB), formerly called 
MemSQL, a distributed general-purpose SQL database designed 
to have the versatility to run both operational and analytical 
workloads with good performance. It was one of the earliest 
distributed HTAP databases on the market. It can scale out to 
efficiently utilize 100s of hosts, 1000s of cores and 10s of TBs of 
RAM while still providing a user experience similar to a single-
host SQL database such as Oracle or SQL Server. S2DB’s unified 
table storage runs both transactional and analytical workloads 
efficiently with operations like fast scans, seeks, filters, 
aggregations, and updates. This is accomplished through a 
combination of rowstore, columnstore and vectorization 
techniques, ability to seek efficiently into a columnstore using 
secondary indexes, and using in-memory rowstore buffers for 
recently modified data. It avoids design simplifications (i.e., only 
supporting batch loading, or limiting the query surface area to 
particular patterns of queries) that sacrifice the ability to run a 
broad set of workloads.  
Today, after 10 years of development, S2DB runs demanding 
production workloads for some of the world’s largest financial, 
telecom, high-tech, and energy companies. These customers 
drove the product towards a database capable of running a 
breadth of workloads across their organizations, often replacing 

two or three different databases with S2DB. The design of S2DB’s 
storage, transaction processing, and query processing were 
developed to maintain this versatility. 

CCS CONCEPTS 
Information systems~Data management systems~Database 
management system engines~DBMS engine architectures 

KEYWORDS 
Databases, Distributed Systems, Separation of storage and 
Compute, Transactions and Analytics 

ACM Reference format: 
Adam Prout, Szu-Po Wang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack 
Chen, Evan Bergeron, Eric Hanson, Robert Walzer, Rodrigo Gomes, & 
Nikita Shamgunov. 2022. Cloud-Native Transactions and Analytics in 
SingleStore In Proceedings of the 2022 Int’l Conference on Management of 
Data (SIGMOD’22), June 12-17, 2022. Philadelphia, PA, USA. ACM, NY, 
NY, USA. 13 pages. https://doi.org/10.1145/3514221.3526055  

1 Introduction 

The market is saturated with specialized database engines. As of 
January 2022, DB-Engines [18] ranks over 350 different 
databases. Amazon Web Services alone supports 15+ different 
database products[1]. There is value in special-case systems [2], 
but when applications end up built as a complex web of different 
databases a lot of that value is eroded. Developers are manually 
rebuilding the general-purpose databases of old via ETL and data 
flows between specialized databases.  
 We believe two industry trends have driven this 
proliferation of new databases. The first trend is the shift to 
cloud-native architectures designed to take advantage of elastic 
cloud infrastructure. Cloud blob stores (S3 [3]) and block storage 
(EBS [44]) allow databases to tap into almost limitless, highly-
available and durable data storage. Elastic compute instances 
(EC2 [4]) allow databases to bring more compute to bear at a 
moment’s notice to deal with a complex query or a spike in 
throughput. The second trend is the demand from developers to 
store more data and access it with lower latency and with higher 
throughput. Modern applications generate a lot of data. This 
performance and data capacity requirement is often combined 
with a desire for flexible data access. These access patterns are 
application-specific but can range from low-latency, high-
throughput writes (including updates) for real-time data loading 
and deduplication, to efficient batch loading and complex 

 

This work is licensed under a Creative 
Commons Attribution-NoDerivs 
International 4.0 License. 

SIDMOD’22, June 12-17, 2022, Philadelphia, PA USA 
© 2022 Copyright held by the owner/author(s).  
ACM ISBN 978-1-4503-9249-5/22/06. 
https://doi.org/10.1145/3514221.3526055  

https://doi.org/10.1145/3514221.3526055
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3514221.3526055
https://creativecommons.org/licenses/by-nd/4.0/


 

 

analytical queries over the same data. Application developers 
have never been more demanding of databases. 
 A common approach to tackle these requirements is to use a 
domain-specific database for different components of an 
application. In contrast, we believe it is possible to design a 
database that can take advantage of elastic cloud infrastructure 
while satisfying a breadth of requirements for transactional and 
analytical workloads. There are many benefits for users in 
having a single integrated, scalable database that can handle 
many application types. These include: reduced training 
requirements for developers, reduced need to move and 
transform data, reduction in the number of copies of data that 
must be stored and resulting reduction in storage costs, reduced 
software license costs, and reduced hardware costs. Furthermore, 
S2DB enables modern workloads to provide interactive real-time 
insights and decision-making, enabling both high-throughput 
low-latency writes and complex analytical queries over ever-
changing data, with end-to-end latency of seconds to sub-
seconds from new data arriving to analytical results. This 
outcome is difficult to achieve with multiple domain specific 
databases. 
 Moreover, adding incrementally more functionality to cover 
different use cases with a single distributed DBMS leverages 
existing fundamental qualities that any distributed data 
management system needs to provide. This yields more 
functionality per unit of engineering effort on the part of the 
vendor, contributing to lower net costs for the customer. For 
example, specialized scale-out systems for full-text search may 
need cluster management, transaction management, high 
availability, and disaster recovery, just like a scale-out relational 
system requires. Some specialized systems may forgo some of 
these capabilities for expediency, compromising reliability. 
 This paper introduces the architecture of the SingleStore 
database engine, a cloud-native database that excels at running 
complex interactive queries over large datasets (100s of 
terabytes) as well as running high-throughput, low-latency read 
and write queries with predictable response times (millions of 
rows written or updated per second). The same SingleStore 
database engine is used both in SingleStore Managed Service, a 
cloud database service, and in the SingleStoreDB (S2DB) 
database product, which can be installed wherever desired. In the 
rest of the paper, we’ll simply refer to the SingleStore database 
engine as S2DB. 
 S2DB can support a breadth of workloads over disaggregated 
storage by pushing only cold data to blob storage and making 
intelligent use of local state when running queries to minimize 
network use. The rest of this paper expands on other important 
design decisions made while building S2DB. We believe our 
design represents a good trade-off between efficiency and 
flexibility and can help simplify application development by 
avoiding complex data pipelines. 
 This paper presents two key components of S2DB that are 
important for cloud-native transactional and analytical 
workloads [42].  
Separation of storage and compute 

 S2DB is able to make efficient use of the cloud storage 
hierarchy (local memory, local disks, and blob storage) based on 
data hotness. This is an obvious design, yet most cloud data 
warehouses that support using blob storage as a shared remote 
disk don’t do it for newly written data. They force new data for a 
write transaction to be written out to blob storage before that 
transaction can be considered committed or durable [26, 27, 30]. 
This in effect forces hot data to be written to the blobstore 
harming write latency. S2DB  can commit on local disk and push 
data asynchronously to blob storage. This gives S2DB all the 
advantages of separation of storage and compute without the 
write latency penalty of a cloud data warehouse. For example, 
S2DB: 
• Can store more data than fits on local disks by keeping cold 

data in blob storage and only the working set of recently 
queried data on local disks.   

• Stores history in blob storage (deleted data can be retained). 
This enables point-in-time restores to points in the past 
without needing to take explicit backups or copy any data 
on a restore. 

• Can provision multiple read-only replicas of a database 
from blob storage without any impact to the read-write 
master copy of the database. The read-only replicas are 
created on their own hosts (called a workspace in S2DB) 
and can be attached and detached to the workspace on 
demand. This allows S2DB to support OLTP and OLAP 
workloads over the same data but using isolated compute 
for each. 

Unified table storage 
 S2DB tables support transactions that need both the scan 
performance of a columnstore (scanning 100s of millions to 
trillions of rows in a second[49]) and the seek performance of 
rowstore indexes to speed up point reads and writes. In S2DB, 
both OLAP and OLTP workloads use a single unified table 
storage design. Data doesn’t need to be copied or replicated into 
different data layouts as other HTAP systems often do [23].  
 S2DB’s unified table storage internally makes use of both 
rowstore and columnstore formats, but end users need not be 
aware of this. At a high level, the design is that of a columnstore 
with modifications to better support selective reads and writes in 
a manner that has very little impact on the columnstore’s 
compression and table scan performance. The columnstore data 
is organized as a log-structured merge tree (LSM) [8], with 
secondary hash indexes supported to speed up OLTP workloads. 
Unified tables support sort keys, secondary keys, shard keys, 
unique keys and row-level locking, which is an extensive and 
unique set of features for table storage in columnstore format. 
Unified table storage is also sometimes referred to as universal 
storage [39] for its ability to handle a universal set of workloads.  
 The rest of the paper is structured as follows. Section 2 gives 
a brief overview of how a S2DB cluster functions: how it 
distributes data, maintains high availability and runs queries. 
Section 3 describes how S2DB separates storage and compute 
without sacrificing support for low-latency writes. Section 4 
details the design of our unified table storage, which we believe 
is ideal for HTAP. Section 5 describes how query execution 



 

adapts to tradeoffs between different data access methods on the 
unified table storage. Section 6 shows some experimental results 
using industry-standard benchmarks to demonstrate that S2DB 
is competitive with both operational and analytical databases on 
benchmarks specific to each workload.  

2 Background on SingleStoreDB 
SingleStoreDB is a horizontally-partitioned, shared-nothing 
DBMS [35] which is optionally able to use shared storage such as 
a blob store for cold data. An S2DB cluster is made up of 
aggregator nodes, which coordinate queries, and leaf nodes, 
which hold copies of partitions of data and are responsible for 
the bulk of compute for queries. Each leaf holds several 
partitions of data. Each partition is either a master which can 
serve both reads and writes, or a replica which can only serve 
reads. 
 Tables are distributed across partitions by hash-partitioning 
of a user-configurable set of columns called the shard key. This 
enables fast query execution for point reads and query shapes 
that do not require moving data between leaves. When join 
conditions or group-by columns match their referenced tables’ 
shard keys, S2DB pushes down execution to individual partitions 
avoiding any data movement. Otherwise, SingleStore 
redistributes data during query execution, performed as a 
broadcast or reshuffle operation, as described in [46]. S2DB’s 
query processor is able to run complex analytical queries such as 
those in the TPC-H and TPD-DS benchmarks competitively with 
cloud data warehouses [19, 46]. 
 SingleStore also supports full-query code generation 
targeting LLVM [40] through intermediate bytecode. LLVM 
compilation happens asynchronously while the query begins 
running via a bytecode interpreter. The compiled LLVM code is 
hotswapped in during query execution when compilation 
completes. Using native code-generation to execute queries 
reduces the instructions needed to run a query compared to the 
more typical hand-built interpreters in other SQL databases [41]. 
The details of S2DB’s query compilation pipeline are omitted 
from this paper. 
 S2DB maintains high availability (HA) by storing multiple 
replicas of each partition on different nodes in the cluster. By 
default, data is replicated synchronously to the replicas as 
transactions commit on the master partitions. Read queries never 
run on HA replicas, they exist only for durability and 
availability.  Queries only run on master partitions or specifically 
created read replicas.  Since HA replicas exist on the same set of 
hosts that store masters for other partitions (see Figure 2), using 
HA replicas to run queries wouldn’t help spread the load across 
the cluster (the same hosts are already busy running queries). 
S2DB does support the creation of read replicas for scaling out 
queries on other hosts without any master partitions, the details 
of which are described in section 3.3. HA replicas are hot copies 
of the data on the master partition such that a replica can pick 
up the query workload immediately after a failover without 
needing any warm up. Failovers and auto-healing are 
coordinated by a special aggregator node called the master 
aggregator. If a node stops responding to heartbeats for long 

enough then replica partitions for any of its master partitions 
will be promoted to master and take over running queries. 
 S2DB also supports the creation of asynchronously 
replicated replicas in different regions or data centers for disaster 
recovery. These cross-region replicas can act as another layer of 
HA in the event of a full region outage. They are queryable by 
read queries by default so can also be used to scale out reads. 
Failovers across regions are not automated in S2DB today, they 
must be triggered by a DBA. 

2.1 Table storage formats 
S2DB uses two storage types internally: an in-memory rowstore 
backed by a lockfree skiplist [6], and a disk-based columnstore 
[5]. In early versions of S2DB, users had to choose either storage 
type on a per-table basis according to the workload 
characteristics. Unified table storage (described in section 4) 
combines both formats internally to support OLAP and OLTP 
workloads using a single storage design. 

2.1.1 Rowstore storage 

Each index in an S2DB in-memory rowstore table uses a lockfree 
skiplist to index the rows. A node in the skiplist corresponds to a 
row, and each node stores a linked list of versions of the row to 
implement multiversion concurrency control so that readers 
don’t need to wait on writers. Writes use pessimistic 
concurrency control, implemented using row locks stored on 
each skiplist node to handle concurrent writes to the same row. 
Each version of the row is stored as a fixed-sized struct (variable-
length fields are stored as pointers) according to the table 
schema, along with bookkeeping information such as the 
timestamp and the commit status of the version. 
 In addition to writing to the in-memory skiplists, write 
operations also write the affected rows to a log before 
committing. A log is created for each database partition, and it’s 
persisted to disk and replicated to guarantee the durability of 
writes. On node restarts, the state of each database partition is 
recovered by replaying the writes in the persisted log. A 
background process periodically creates a snapshot file 
containing the serialized state of the in-memory rowstore tables 
at a particular log position. This allows the recovery process to 
start replay from the latest snapshot’s log position to limit 
recovery time. 

2.1.2 Columnstore storage 

The data in a columnstore table is organized into segments, 
where each segment stores a disjoint subset of rows as a set of 
data files on disk. Within a segment, each column is stored in the 
same row order but compressed separately. Common encodings 
like bit packing, dictionary, run-length encoding, and LZ4 are 
supported for column compression. The same column can use a 
different encoding in each segment optimized for the data 
specific to that segment. The segment metadata is stored in a 
durable in-memory rowstore table (described in section 2.1.1), 
containing information including the file locations, the 
encodings, and the min/max values for each column. 



 

 

Additionally, a bit vector is stored within the segment metadata 
to represent the deleted rows in the segment. 
 This representation is mostly optimized for OLAP, however, 
several considerations were made to speed up point read 
operations commonly found in OLTP workloads. The column 
encodings are each implemented to be seekable to allow efficient 
reads at a specific row offset without decoding all the rows. 
Storing min/max values allows segment elimination to be 
performed using in-memory metadata to skip fetching segments 
with no row matched. 
 A sort key can be specified on each columnstore table  to 
allow more efficient segment elimination. If specified, rows are 
fully sorted by the sort key within each segment. The sort order 
across segments is maintained similar to LSM trees [8, 5] by 
building up sorted runs of segments. A background merger 
process is used to merge the segments incrementally to maintain 
a logarithmic number of sorted runs. 
 For each columnstore table, S2DB creates a rowstore table as 
a write-optimized store to store small writes and avoid creating 
small sorted runs across many files. This corresponds to the level 
0 storage in other LSM trees, like MemTable in RocksDB [10]. A 
background flusher process periodically deletes rows from the 
rowstore and converts those rows into a columnstore segment in 
a transaction. For read performance, this write-optimized store is 
kept small relative to the table size. Since the background merger 
and flusher processes can move rows between the rowstore and 
different segments, reads need to use partition-local snapshot 
isolation to guarantee a consistent view of the table.  
 Columnstore tables support vectorized execution [9], and, for 
some filter, group-by and hash join operations, encoded 
execution [7]. S2DB vectorized execution uses late 
materialization, only decoding columns if data in them qualifies 
based on filters on other columns. Encoded execution can 
achieve large speedups on filtering and aggregation operations 
by operating directly on compressed data and using SIMD 
instructions when appropriate. 

3 Separation of storage and compute 
 S2DB can run with and without access to a blob store for 
separated storage. When running without access to blob storage, 
S2DB behaves like a typical shared-nothing distributed database, 

where the nodes in the cluster are the source of truth. When 
running with a blob store, S2DB is atypical in that it doesn’t 
store all persistent data on the blob store and only transient data 
on local storage. Instead, newly written data is only persisted on 
the local storage of the cluster and later moved to the blob store 
asynchronously. This design allows S2DB to commit 
transactions without the latency penalty of needing to write all 
the transaction data to blob storage to make it durable. By 
treating blob storage truly as cold storage, S2DB is able to 
support low-latency writes while still getting many of the 
benefits of separated storage (faster provisioning and scaling, 
storing datasets bigger than local disk, cheaper historical storage 
for point in time restores etc.). So in order to describe how S2DB 
separates storage, it’s important to understand how S2DB’s local 
or integrated durability and compute functions, as that local 
durability mechanism works in tandem with blob storage to 
maintain durability of committed transactions. 
 Durability is managed by the cluster on each partition using 
replication. The in-cluster replication is fast and log pages can be 
replicated out-of-order and replicated early without waiting for 
transaction commit. Replicating out-of-order allows small 
transactions to commit without waiting for big transactions, 
guaranteeing that commits have low and predictable latency. By 
default, data is considered committed when it is replicated in-
memory to at least one replica partition for every master 
partition involved in a transaction. This means loss of a single 
node will never lose data, and if replication is configured across 
availability zones, loss of an entire availability zone will never 
lose data. If all copies of a partition are lost due to concurrent 
node failures, before any new HA replicas are provisioned, 
recently written data that was only present in-memory will be 
lost, but any data synced to local disk is recoverable as long as 
the local disk survived the failure (i.e., a database process crash). 
While SingleStore supports synchronously committing to local 
disk as well, this tradeoff often doesn’t make sense in cloud 
environments where loss of a host often implies loss of the local 
storage attached to that host. For this reason, S2DB doesn’t 
synchronously commit transactions to local disk by default. 
 Section 2 showed that the data for a partition of a 
columnstore table is stored in a LSM tree, where the top level is 
an in-memory rowstore, and lower levels are HTAP-optimized 
columnstore data files. To explain how the integrated durability 

Figure 1: Example of a sequence of writes in S2, showing the state of the in memory and persisted structures in each step. (a) 
Inserting rows 1,2,3 in two transactions (b) Converting in-memory rows 1,2,3 to segment 1 (c) Deleting row 2 from segment 1. 



 

Figure 2: Cluster architecture with separated storage. The 
left side shows how the master workspace uploads data 

files, logs, and snapshots to blob storage asynchronously, 
while using replication to ensure durability of the log 

tails. The right side shows a read-only workspace 
provisioned from blob storage 

mechanism works with the table storage, figure 1 presents the 
database state after a few example write operations. The bottom 
of figure 1 shows the persisted structures stored on disk, 
including the log and the physical columnstore data files, while 
the top shows the corresponding in-memory state at each step. 
Figure 1(a) shows two insert transactions made durable in the 
log and the rows inserted to the in-memory rowstore. 
 When enough rows are amassed in the in-memory rowstore, 
they will be converted into a columnstore segment by the 
flushing process described in section 2.1.2. As illustrated in 
figure 1(b), the flushing process creates data files to store the 
rows in a segment, and deletes the converted rows from the in-
memory rowstore in the same transaction. Each data file is 
named after the log page at which it was created, so that data 
files can be considered as logically existing in the log stream, 
while physically being separate files. For larger write 
transactions that involve the creation of multiple data files, each 
file is replicated as soon as it’s written on the master without 
need to wait for the transaction to commit. 
 Data files are immutable - to delete a row from a segment, 
only the segment metadata is updated to mark the row as deleted 
in the deleted bit vector. Figure 1(c) shows how the metadata 
change is logged for a delete (omitting for simplicity the move 
transaction described in section 4.2). The key observation is that 
the data file itself is immutable, but the metadata changes are 
logged, which will lend itself well to the separation of storage 
and compute. 

  

3.1 Staging Data from Local to Remote Storage 

As shown in the previous section, S2DB has durable, low-latency 
data storage in which all data for a given partition is recorded in a 
single log.  The log is the only file which is ever updated (via 
appends).  The data files containing columnstore data are 
immutable once written. This immutability is important for 
making use of blob storage because cloud blob stores typically 
don’t support efficient file updates.  
 S2DB’s separation of storage and compute design is shown in 
Figure 2 and can be summarized as follows: 
• Transactions are committed to the tail of the log and 

replicated to other nodes just as when S2DB runs without 

blob storage available. Since the tail of the log is stored on the 
local disk and memory of the leaf nodes, no blob store writes 
are required to commit a transaction 

• Newly committed columnstore data files are uploaded 
asynchronously to blob storage as quickly as possible after 
being committed. Hot data files are kept in a cache locally on 
disk for use by queries and cold data files are removed from 
local disk once uploaded.  

• Transaction logs are uploaded to blob storage in chunks 
below a position in the log known to contain only fully 
durable and replicated data. The tail of the log newer than 
this position is still receiving active writes, thus these newer 
log pages are never uploaded to blob storage until replication 
advances the fully durable and replicated log position past 
them. 

• Snapshots of rowstore data are taken only on master 
partitions  and written directly  to the blob store  reducing 
local disk IO compared to S2DB running without blob 
storage. Replicas don’t need to take their own snapshots. If a 
replica ever needs a snapshot (say because it was 
disconnected for a long period of time), it can get the 
snapshot from blob storage. 

• To add more compute to the cluster, new replica databases 
get the snapshots and logs they need from blob storage and 
replicate the tail of the log (not yet in blob storage) from the 
master databases. Columnstore data files are pulled from the 
blob store on demand and stored in the data file cache as 
needed. This design allows new replicas to be provisioned 
quickly, as they don’t need to download all data files before 
they can start acknowledging transactions or servicing read 
queries. This fast provisioning process allows pools of 
compute called workspaces to be created over the same set of 
databases as shown in Figure 2. These are discussed in more 
detail in section 3.2. 

 The biggest advantage of this design compared to the designs 
used by cloud data warehouses is that blob store writes are not 
needed to commit a transaction, so write latency is low and 
predictable. Since data files are uploaded to the blob store 
asynchronously and the working set of recently used data files are 
kept cached on local disks, short periods of unavailability in the 
blob store doesn’t affect the steady-state workload, as long as 
reads happen within the cached working set. This allows S2DB to 
not be limited by the availability guarantee of the underlying blob 
store, which is usually much less than its durability guarantee. For 
example, Amazon S3 guarantees 11 nines of durability but only 3 
nines of availability [45]. S2DBs design contrasts with many cloud 
data warehouses that need data to be written to the blobstore for it 
to be considered durable [26, 27, 30]. On the other hand, persisting 
to local disk and then moving the data to blob storage 
asynchronously does have some drawbacks compared to keeping 
all persistent data in the blob store. Our approach is more complex 
as keeping persistent state on local disk/memory requires a local 
high performance replication and recovery protocol. It’s also less 
elastic. Adding or removing hosts requires moving the local data 
not yet in blob storage carefully to maintain durability and 
availability guarantees. In the event of multiple concurrent 



 

 

failures, for instance loss of all nodes which have a copy of a single 
partition, committed data could be lost. This can be mitigated by 
having sync replicas spread across multiple availability zones, so 
losing data would require concurrent failures between availability 
zones or the loss of an entire region. 
 Cloud operational databases such as Amazon Aurora [28] 
don’t use blob storage for system-of-record data at all, instead 
using their own separated storage or log services to make data 
durable and available.  Blob storage is only used for backups. As a 
result, the maximum database size that Aurora can support is 
limited by what its storage service can support, currently 128 TB 
(it’s not unlimited).  It also means the expense associated with 
storing and accessing data is higher (Aurora storage is about 4 
times as expensive as S3).This trade-off makes sense for a database 
targeting OTLP workloads, as the data sizes they deal with are 
typically smaller and prioritizing efficient availability and 
durability features is more important for OLTP.  

3.2 Capabilities Enabled by Separated Storage 
S2DB’s separated storage design gives it many of the benefits 
expected of systems using shared remote storage. Even though 
S2DB’s data separation relies on storing the tail of the log on local 
disk/memory, the typical capabilities of having the bulk of the 
database’s data on remote storage still apply. Some example 
capabilities enabled by remote storage are: 
• S2DB uses faster ephemeral SSDs for local storage instead of 

more expensive and slower network block storage (EBS) 
often used by other cloud databases [21]. Most of the data 
stored on local disks is cached, frequently-accessed data that 
is persisted in the blob store. The local disks are not 
responsible for persisting this data. The local disks are only 
responsible for persisting the tail of the log not yet in blob 
storage as described in section 3 and 3.1. Ephemeral SSDs can 
have multiple orders of magnitude higher IOPS than network 
block storage depending on the particular disks used, so this 
is a considerable boost in performance for  workloads doing a 
lot of concurrent reads and writes. 

• S2DB can keep months of history since it is cheap to store 
data at rest in blob storage. This history is used by  a point in 
time restore (PITR) command to restore a database back to 
the state it was in at a given time in the past  without the 
need to have taken an explicit backup at that time. The blob 
store acts as a continuous backup of the database.  A PITR to 
a target time in the past runs by inspecting the versioning 
metadata stored in the log files in blob storage to find a 
transactionally consistent point in the log (called LP) for each 
partition that maps as closely as possible to the given PITR 
target wall clock time. It then drops the existing local state of 
the database, and does a restore up until the log position LP 
for each partition in the same fashion as when recovering 
data from blob storage on a process restart.  That is, it fetches 
and replays the data from the first snapshot file before LP in 
the log stream and then fetches and replays any logs after the 
snapshot until LP is reached. Note that today S2DB doesn’t 
support querying at a specific point in time, sometimes called 

time travel querying, only a full restore of the database state 
via PITR is supported. 

• S2DB supports the creation of read-only workspaces which 
are a set of hosts that replicate recently written data 
asynchronous  from the primary writable workspace, but 
which don’t participate in acking commits for durability, as 
shown in figure 2. Read-only workspaces can be used to scale 
out the cluster on demand to handle an increase in read query 
concurrency by directing some of the read workload to the 
new workspace.  Depending on the number of hosts in the 
workspace and the amount of data being actively queried, 
they can often be created within minutes. They also create an 
isolated environment to run heavy analytical workloads 
without impacting a more mission-critical read/write 
workload running on the primary workspace. Data files other 
than the recently written ones that are replicated to the 
workspace are read from the blob store directly rather than 
from the primary workspace, so that each workspace can 
cache its own set of data independently. 

In conclusion, S2DB’s design for separation of storage and 
compute gives it many of the durability and elasticity benefits of 
traditional cloud data warehouse designs. Specifically, flexible 
options for pausing, resuming and scaling compute, as well as 
access to practically unlimited durable storage that scales 
independently of compute and that can be used for consistent 
point in time restores. However, S2DB’s integrated durability and 
compute means it does not sacrifice write latency, making our 
storage design suitable for both analytic workloads and 
transactional workloads.  

4 Unified table storage 
As a storage engine built for HTAP, S2DB table storage needs to 
work well in a wide range of workloads. In many situations, we 
observed that choosing between rowstore and columnstore storage 
formats was a hard decision for users. It required the users to 
identify whether the access patterns of each table lean OLTP or 
OLAP, creating friction when developing applications. This was 
especially true for workloads having both OLTP and OLAP aspects 
on the same tables, like real-time analytic use cases running 
analytics concurrently with high-concurrency point reads and 
writes. Therefore, we designed the unified table storage with the 
foremost goal of providing a unified table type that works well 
both for OLTP and OLAP access. This eliminates the burden on 
users to choose the data layout suitable for their particular 
workload. Furthermore, it allows demanding HTAP workloads to 
work efficiently without the complexity of managing data 
movements across tables serving different parts of the workloads. 
To quantify some of the benefits we wanted to achieve with 
unified table storage, we sought to allow customers who were 
using a UNION ALL view of a rowstore (storing recent data for 
uniqueness enforcement) and a columnstore (storing older data for 
efficient analytics) to just use one unified storage table. This 
replaces three DDL statements with just one, and eliminates 
application code to move data from rowstore to columnstore as it 
ages. Analytical query performance also improves, often by several 



 

times, because UNION ALL plans are harder to optimize and 
execute than plans over a regular table. 
 To achieve this, unified table storage extends the columnstore 
storage described in 2.1.2. S2DB columnstore storage is LSM-tree 
based, which writes data in large consecutive chunks and works 
well with tiered storage. The column-oriented data format is well 
known to be ideal for OLAP workloads [31]. Therefore, the main 
problem to solve here is making it work efficiently for OLTP use 
cases without sacrificing its OLAP performance. In particular, 
S2DB unified table storage maintains these properties crucial to 
the performance of the columnstore storage: 
• No merge-based reconciliation during reads 
Common LSM tree implementations, such as RocksDB [10], 
Cassandra [33], and BigTable [34], use tombstone entries to 
represent deletes in the LSM tree. Under this representation, reads 
need to reconcile results from all LSM levels to read the latest data. 
S2DB columnstore storage avoids this reconciliation process for 
reads, since merging would introduce a significant per-row 
overhead on analytical queries (for comparison, the total 
processing time for TPCH query 1 can be as low as 8.6 clock cycles 
per-row using vectorized execution on encoded data [7]). Instead, 
S2DB represents deletes using a bit vector stored as part of the 
segment metadata, which is cheaper to apply on the data files for 
the segment to filter out deleted rows compared to merging all 
LSM tree levels.  
• Minimize disk access and blocking during writes 
Similar to common LSM tree implementations, S2DB columnstore 
storage performs streaming inserts on an in-memory write-
optimized store to achieve low latency writes. Different from other 
LSM trees, for update and delete operations S2DB needs to modify 
the segment metadata in addition to the in-memory store, due to 
the design decision to avoid tombstone records. While update and 
delete operations still minimize disk writes, extra care (section 4.2) 
is required to avoid blocking from concurrent modifications on the 
same segment. 

4.1 Secondary indexes 
Secondary indexes are important for efficient point access in 
transactional workloads. Some commonly adopted indexing 
approaches for LSM tree implementations are: 
 Per-segment filtering structure - Building bloom filters or 
inverted indexes for each on-disk segment to allow skipping the 
individual segments when there isn’t a match [12], like RocksDB 
[10], Procella [11], Cassandra SASI index [13], and many other 
LSM tree implementations [37]. 
 External index structure - Having an index structure (e.g. a 
B-tree or a separate LSM tree) outside of the LSM tree used for 
table storage, mapping the secondary index columns to the values 
of the primary index columns, like Spanner [32] and WiredTiger 
[36]. Note that this approach is used for non-LSM tree storage 
engines as well, such as InnoDB [15]. SQL server [14] uses the 
position of the row in the columnstore instead of the primary 
index columns, but it also requires an external mapping index to 
find the current position of the row from its original position.  

 
Figure 3: Two-level secondary index structure. A segment 
and a global hash table from the corresponding LSM trees 

are shown here 

Differing from the common approaches, S2DB secondary indexes 
use a two-level structure integrated with the LSM tree storage, 
as illustrated in figure 3. 
• For each segment, an inverted index is built to map values 

of the indexed column to a postings list, which stores row 
offsets in the segment with that value. 

• Across segments in the table, a global index is used to map 
values of the indexed column to the ids of the segments 
with that value, along with the starting location of the 
corresponding postings list in the inverted index for each 
segment. 

The per-segment inverted index is similar to other LSM tree 
implementations. Since the content of each segment is 
immutable, the per-segment inverted index gets built once when 
the segment is created and stays unchanged. The global index 
allows reads to query the inverted indexes only on segments 
with the target value. Since the starting location of the posting 
list is stored inline in the global index, this doesn’t introduce an 
extra indirection during the lookup. 
 The global index can be implemented with different data 
structures to support different index types. Currently S2DB 
supports unordered secondary indexes, where the global index 
uses a special LSM tree storing an immutable hash table at each 
level. When a segment is created, a corresponding hash table 
gets created for the secondary index, covering values from the 
segment. Over time, the hash tables for different segments get 
merged together using the LSM tree merging algorithm, creating 
larger hash tables covering multiple segments. Segment deletions 
are handled lazily in the global index -- reads simply skip the 
references to deleted segments in the global hash tables, and the 
LSM tree merging process later rewrites the hash table if at least 
half of the segments it covers are deleted. Lazy segment deletion 
allows the index maintenance to happen independently from the 
data segments, so that secondary indexes won’t become a point 
of contention on writes. In the future, we plan to support 
ordered secondary indexes by using a regular ordered LSM tree 
as the global index structure. 
 Since the global index is implemented as a LSM tree, it 
introduces an extra O(log(N)) factor in write amplifications due 
to the merges. An optimization to minimize the write cost is that 



 

 

S2DB stores only the hashes, not the column values in the global 
hash tables. The column values are instead stored in the per-
segment inverted indexes. This reduces the write cost 
significantly in cases with wide columns (e.g. when indexing on 
strings) since the per-segment inverted indexes don’t go through 
the merges on the global index. Furthermore, the global index 
only stores information about the unique values in each 
segment, so its write cost is minimal when the index column 
contains only a few distinct values. 
 Compared with the per-segment filtering structure approach, 
this implementation has significant advantage on point reads, 
since the number of lookups required is O(log(N)) (checking each 
hash table in the global index) instead of O(N) (checking the 
index or bloom filter per segment). The drawback is having an 
extra O(log(N)) factor in the write cost, which we found to be an 
acceptable tradeoff for efficient index lookups. 
 Compared with the external index structure approach, this 
implementation has advantage on reads, since it avoids the cost 
of performing a LSM tree lookup per matched row for finding 
the row in the primary LSM tree storage. The main difference 
here is that this implementation stores the physical row offsets 
instead of the primary key value. This advantage is particularly 
significant when there are many matched rows for the same 
secondary key value. The drawback is having extra write cost 
when merging happens on the primary LSM tree, since merges 
change the physical row offsets, which then creates a new hash 
table in the global index. On the other hand, this extra write cost 
is minimal when the primary LSM tree rarely needs to perform 
merges, e.g. when the table has no sort key, or the rows are 
inserted in the sort key order. 
 The per-segment inverted index in this design allows the 
simultaneous use of multiple indexes when filtering on a boolean 
expression of multiple indexed columns. Lookup results from 
different indexes can be combined efficiently by merging the 
postings lists [43], so that only the exact set of rows passing all 
index filters gets scanned. S2DB’s postings list format supports 
forward seeking, so that sections in a long postings list can be 
skipped during the merge, if postings lists from the other indexes 
already guarantee that no match is present in the section. 

4.1.1 Multi-column secondary index 

To support multi-column secondary indexes while minimizing 
storage costs, S2DB builds a secondary index for each indexed 
column, and allows the single-column indexes to be shared 
across multiple indexes referring to the same columns. For 
example, a secondary index on columns (a, b, c) builds the 
following data structures: 
1. Per-segment inverted indexes on each of the columns a, b, c 
2. Global indexes on each of the columns a, b, c. 
3. A global index on the tuple of indexed columns (a, b, c), 

mapping from the hash of each tuple (value_a, value_b, 
value_c) to the starting locations of the corresponding per-
column postings lists for value_a, value_b, and value_c. 

 The per-column data structures (1) and (2) are the same as 
single-column secondary indexes. Building inverted indexes per-
column allows S2DB to answer queries on any subset of indexed 

columns by merging the postings lists from the individual per-
column indexes.  
 Since the most selective filtering on a multi-column index 
happens on queries filtering on all indexed columns, we build an 
extra global index (3) to speed up those queries by skipping 
segments without a row matching all indexed columns. This is 
also important for uniqueness enforcement (section 4.1.2), since 
the unique key check is by definition always matching all 
columns in the unique key. 
 The need to merge per-column postings lists in this design 
introduces a higher index lookup cost compared to the 
alternative design of building a postings list specific to each 
unique tuple of indexed columns. This difference is more 
significant if each individual column has a large number of 
matches, since the merging cost increases with the length of the 
postings lists, while the seeking cost remains constant. Despite 
the higher index lookup cost in non-selective cases, we believe 
that the flexibility of filtering on a partial index match is more 
important. Note that the total cost of the read includes also the 
cost of decoding the matched rows, which is similarly 
proportional to the number of matched rows, and it often 
outweighs the index lookup cost in non-selective cases. 

4.1.2 Uniqueness enforcement 

Most columnstore implementations don’t support the 
enforcement of uniqueness constraints. For the few that do, it’s 
usually done by either making the LSM tree sort on the unique 
key [16], or duplicating the data into a rowstore table or index 
[14]. Using the secondary index structure described above, S2DB 
columnstore supports uniqueness constraint enforcement 
without forcing the sort key to be the unique key columns or 
duplicating the data. The idea is simple - each newly inserted 
row checks the secondary index for duplicates before inserting 
into the table. As an optimization, each batch of ingested rows is 
checked together to amortize the metadata access cost of the 
global indexes. The following procedure is used 
1. Take locks on the unique key values for each row in the 

batch. An in-memory lock manager is used here to avoid 
concurrent inserts of the same unique key value. 

2. Perform secondary index lookups on the unique key values. 
3. When there are duplicated values, depending on the user-

specified unique-key handling option, either report an error 
(default), skip the new row (SKIP DUPLICATE KEY 
ERRORS option), delete and then replace the conflicting 
rows (REPLACE command), or update the conflicting rows 
(ON DUPLICATE KEY UPDATE option). 

In the typical case when there’s no duplicate value found during 
the secondary index lookup, the secondary index lookup only 
needs to access the global hash tables (and rarely the per-
segment inverted indexes on hash collision). When there are 
duplicates, the data segments would need to be accessed at the 
row offsets matched by the index in the REPLACE and ON 
DUPLICATE KEY UPDATE cases. 
 
 



 

4.2 Row-level locking 

S2DB columnstore storage represents deleted rows in a segment 
as a bit vector in the segment metadata. While this 
representation is optimized for vectorized access during 
analytical queries, a naive implementation would introduce a 
source of contention when modifying the segment metadata: a 
user transaction running update or delete operations would 
acquire the lock on the metadata row of a modified segment to 
install a new version of the deleted bit vector, blocking other 
modifications on the same segment (1 million rows) until the 
user transaction commits or rolls back. Furthermore, the 
background merging process described in section 2.1.2 runs 
segment merge transactions, which can also block modifications 
on the segments being merged. 
 Instead of the naive implementation of having update and 
delete queries update the bit vector directly, S2DB implements a 
row-level locking mechanism to avoid blocking during 
transactional workloads. Rows to be updated or deleted are first 
moved to the in-memory rowstore part of the table in an 
autonomous transaction, which we refer to as a “move 
transaction”. Since moving the row doesn’t change the logical 
table content, the move transaction can be committed 
immediately, so that the user transaction only needs to lock and 
modify the in-memory row. With this approach, the primary key 
of the in-memory rowstore acts as the lock manager, where 
inserting a copy of the row locks the row preventing concurrent 
modifications. To ensure that the locked rows aren’t modified 
before inserting their copies, an extra scanning pass on newly 
created segments is performed after locking to find the latest 
versions of the locked rows. 
 Since a move transaction doesn’t change the logical table 
content, it can be reordered with other move or segment merge 
transactions. Reordering move and segment merge transactions 
allows segment merges to happen without blocking update or 
delete queries. Furthermore, concurrent move transactions are 
combined and committed as a single transaction as an 
optimization. To make sure that deleted bits set by move 
transactions reflect the latest segment metadata, the commit 
process applies all segment merges between the scan timestamp 
and the commit timestamp of the move transaction to the 
deleted bits modified as part of the move. 

5 Adaptive query execution 

Unified table storage supports multiple data access methods for 
transaction and analytical processing. Since hybrid workloads 
blur the boundary between transaction and analytical 
processing, for those workloads it becomes important for the 
query execution engine to combine different access methods and 
apply them in the optimal order. For example, a query may be 
able to use a secondary index for one filter and encoded 
execution for another. In which case, the optimal order of 
applying those filters would depend on the selectivity and the 
evaluation cost of each filter. Static decisions made by the query 
optimizer don’t always work well for selecting data access 
methods, since the cost depends highly on the query parameters 

and the encodings used. Instead, S2DB adopts adaptive query 
execution to make the data access decisions dynamically. 
 Data access on S2DB unified table storage has 3 high-level 
steps: (1) finding the list of segments to read, (2) running filters 
to find the rows to read from each segment, and (3) selectively 
decoding and outputting the rows. Each step outputs in a 
consistent format, which serves as the common interface to be 
used across different data access methods. This section focuses 
on the first two steps to discuss how they incorporate dynamic 
decisions to work efficiently in HTAP workloads. 

5.1 Segment skipping 

Segments can be skipped using either the global secondary index 
structures or the min/max values stored in the segment 
metadata. The secondary index check is done first, because it 
only requires probing O(log(N)) times, and its result can reduce 
the number of segments to check for the min/max values. On the 
other hand, there can be multiple keys to look up when the index 
is used in cases like an IN-list or multiple filters connected by 
OR, which increases the index probing cost proportionally. 
Therefore, S2DB dynamically disables the use of a secondary 
index if the number of keys to look up is too high relative to the 
table size. 
 Using secondary indexes adaptively is important when 
running joins, since the number of keys used for join probing 
can have large variations. Instead of the typical representation of 
a nested loop join on the index, S2DB models a secondary index 
join as a "join index filter": similar to bloom filters used in hash 
joins, it filters the larger table using the smaller of the joined 
tables. Compared to a bloom filter, the join index filter has no 
false positives, and it runs much faster (with a small joined table) 
by performing index probes instead of a table scan. This model 
allows the join index filter to be dynamically disabled, in which 
case the execution falls back to a hash join, scanning the larger 
table and probing the hash table built from the smaller table.  

5.2 Filtering 

For each clause (e.g. col1 = val1) in the filter condition, there are 
up to four different ways to evaluate the filter, each with 
different tradeoffs: 
Regular filter selectively decodes col1 for rows that passed 
previous filters, then executes filter on the decoded values. 
Encoded filter executes directly on the compressed values. For 
example, when dictionary encoding is used, it evaluates the filter 
on all possible values in the dictionary for col1, then looks up the 
results based on the dictionary index without decoding the 
column. Compared with a regular filter, this strategy is ideal 
with a small set of possible values, but it can be worse if the 
dictionary size is greater than the number of rows that passed 
the previous filters. 
Group filter decodes all filtered columns and runs the entire 
filter condition, instead of running the filter clauses separately. 
Compared with a regular filter, running a group filter is better if 
most rows pass each individual filter clause since it avoids the 
cost of combining results from individual clauses. On the other 



 

 

hand, a regular filter is better if some clauses can filter out and 
skip further filter evaluation on most of the rows. 
Secondary index filter reads the postings list for val1 stored in 
the index to find the filtered row offsets. Using a secondary index 
is usually better compared to a regular filter. However, it can still 
be worse if the other clauses already filtered the result down to a 
few rows. 
 To select the optimal evaluation strategy, S2DB costs each 
different method of filter evaluation by timing it on a small batch 
of data at the beginning of each segment. Doing the costing per-
segment ensures that the cost is aware of the data encoding and 
the data correlation with the sort key. For filters using an index, 
costing is done using the postings list size stored in the index, 
since there’s no per-row evaluation cost beyond reading the 
postings list. Costing is skipped if the filter condition is a 
conjunction with a selective index filter, since costing in this 
case would be more expensive than running the filters on rows 
output by the index. 
 Furthermore, S2DB dynamically reorders filter clauses using 
estimated per-row evaluation costs and filter selectivities. 
Consider a filtering condition A AND B with two clauses. Let 
cost(X) be the cost of evaluating clause X, and P(X) be its 
selectivity. It’s better to evaluate A first if the following 
inequality holds: 

𝑐𝑜𝑠𝑡(𝐴) + 𝑃(𝐴) ∗ 𝑐𝑜𝑠𝑡(𝐵) ≤ 𝑐𝑜𝑠𝑡(𝐵) + 𝑃(𝐵) ∗ 𝑐𝑜𝑠𝑡(𝐴) 
The above inequality is equivalent to the following (by dividing 
both sides by cost(A) * cost(B) and rearranging the terms): 

1 − 𝑃(𝐵)

𝑐𝑜𝑠𝑡(𝐵)
≤
1 − 𝑃(𝐴)

𝑐𝑜𝑠𝑡(𝐴)
 

Therefore, the optimal evaluation order can be found by sorting 
the clauses by (1 - P(X)) / cost(X), under the assumption that 
filter clauses are independent. Similar reordering can be done for 
clauses connected by OR by tracking the ratio of rows not 
selected by the filter clause instead of the selected rows. S2DB 
represents the filter condition as a tree and reorders each 
intermediate AND/OR node in the tree separately. The ordering 
decision is made per-block using the selectivities from previous 
blocks, to ensure that the selectivity estimates reflect the data 
distribution in the nearby blocks. 

6 Experimental Results 

We used benchmarks derived from the industry-standard TPC-H 
and TPC-C benchmarks to evaluate S2DB compared to other 
leading cloud databases and data warehouses. The results below 
show S2DB achieves leading-edge performance on both TPC-H, 
an OLAP benchmark, and TPC-C, an OLTP benchmark. We also 
ran CH-BenCHmark against S2DB which runs a mixed workload 
derived from running TPC-C and TPC-H simultaneously. 
 We compared S2DB with three other products: two cloud 
data warehouses we refer to as CDW1 and CDW2, and a cloud 
operational database we refer to as CDB. As the results below 
show, S2DB had good performance and cost-performance on the 
analytic benchmark TPC-H compared to the cloud data 
warehouses, and on the transactional benchmark TPC-C 
compared to CDB. On the other hand, CDW1 and CDW2 only 

support data warehousing and cannot run TPC-C. CDB can run 
both benchmarks, but our results as well as previous results [47] 
show it performs orders of magnitude worse than the cloud data 
warehouses on TPC-H. 
 We ran both benchmarks on S2DB’s unified table storage 
described in section 4. That is, both benchmarks were run using 
the same underlying table storage (which is the default out-of-
the-box configuration; we did not force rowstore or columnstore 
table storage). We used indexes, sort keys, and shard keys 
appropriate for each benchmark, and used similar features across 
all products where those options were available. The schemas, 
data loading commands, and queries used for testing are 
published online[17]. 
 We used the schemas, data, and queries of the benchmarks 
as defined by the TPC. However, this is not an official TPC 
benchmark.  
 We compared the products on TPC-H at the 1TB scale factor, 
and TPC-C at 1,000 warehouses. Note that we have previously 
published results on these benchmarks as well as TPC-DS at 
much larger scale factors [19, 50], demonstrating that S2DB 
scales well. Here, we chose to run TPC-H instead of TPC-DS 
because it required fewer modifications to run the same 
benchmark on CDW1 and CDW2. 
 
Product vCPU Size 

(warehouses) 
Throughput 
(tpmC) 

Throughput 
(% of max) 

CDB 32 1000 12,582 97.8% 
S2DB 32 1000 12,556 97.7% 
S2DB 256 10000 121,432 94.4% 
Table 1: TPC-C results (higher is better, up to the limit of 

12.86 tpmC/warehouse) 

Product Cluster 
price per 
hour 

TPC-H 
geomean 
(sec) 

TPC-H 
geomean 
(cents) 

TPC-H 
throughput  
(QPS) 

S2DB $16.50 8.57 s 3.92 ¢ 0.078 
CDW1 $16.00 10.31 s 4.58 ¢ 0.069 
CDW2 $16.30 10.06 s 4.55 ¢ 0.082 
CDB $13.92 Did not finish within 24 hours 

Table 2: Summary of TPC-H (1TB) results 

 We did comparisons on Amazon EC2 on cluster sizes that 
were chosen to be as similar in price as possible. Information 
about the cluster configurations we used are in Table 1 and 2. 
 For TPC-H, we measured the runtime of each query, and 
computed the cost of each query by multiplying the runtime by 
the price per second of the product configuration. We then 
computed the geomean of the results across the queries. The 
results are shown in Table 2 and Figures 4. We performed one 
cold run of each query to allow for query compilation and data 
caching, and then measured the average runtime of multiple 
warm runs of each query, with results caching disabled. S2DB, 
CDW1, and CDW2 all have competitive performance. We also 
tested CDB on the largest available size ($13.92 per hour), and it 
performed orders of magnitude worse: most queries failed to 
complete within 1 hour, and running all the benchmark queries 



 

once failed to complete within 24 hours (compared to about 5 
minutes for the cloud data warehouses).  
 For TPC-C, we compared S2DB against CDB, as shown in 
Table 1. Note all S2DB results were on our columnar-based 
unified table storage, and were competitive with CDB which is a 
rowstore-based operational database. CDW1 and CDW2 do not 
support running TPC-C. We measured the throughput (tpmC), as 
defined by the TPC-C benchmark. We compared against results 
previously published by CDB. Note that TPC-C specifies a 
maximum possible tpmC of 12.86 per warehouse, and both S2DB 
and CDB are essentially reaching this maximum at 1,000 
warehouses, with similarly priced clusters. We also tested S2DB 
on TPC-C at 10,000 warehouses and it continues to scale linearly. 
 These results, summarized in Figure 5, demonstrate that 
S2DB’s unified table storage is able to achieve state-of-the-art 
performance competitive with leading operational databases as 
well as analytical databases on benchmarks specific to each 
workload. In contrast, cloud operational databases like CDB have 
orders of magnitude worse performance on TPC-H, because of 
the use of a row-oriented storage format and single-host query 
execution on complex query operations; cloud warehouses like 
CDW1 and CDW2 are unable to support TPC-C, due to the lack 
of enforced unique constraints, granular locking, and efficient 
seeks under high concurrency. S2DB can meet workload 
requirements that previously required using multiple specialized 
database systems.  
 
Test 
Case 

vCPU Configuration 
TW=Transaction 
Worker 
AW=Analytic Worker 

Transactiona
l 
Throughput 
(TpmC) 

Analytical 
Throughpu
t 
(QPS) 

1  16 50 TWs and 0 AWs 7530 - 
2 16 0 TWs and 2 AWs - 0.076 
3 16 50 TWs and  2 AWs 

sharing one workspace 
3950 0.039 

4 32 50 TWs and 2 AWs 
each in own workspace 

7454 0.062 

5 32 50 TWs and 2 AWs 
each in own workspace, 
no blob store 

7545 0.065 

Table 3: Summary of S2DB CH-BenCHmark results (1000 
warehouses, 20 minute test executions) 

 To demonstrate how S2DB performs on mixed workloads we 
ran CH-BenCHmark in several different configurations by 
varying the number of transactional workers (TWs) running a 
TPC-C workload and analytical workers (AWs) running TPC-H 
queries over the same tables.  The results are shown in Table 3.  
Test cases 1 to 3 were run with a single writable workspace with 
2 leaves in it.  50 TWs resulted in the highest TpmC when they 
were run in isolation with no AWs (test case 1).  2 AWs results 
in the highest queries per second (QPS) from TPC-H when run in 
isolation (test case 2).   When 50 TWs and 2 AWs are run 
together in the same workspace each slows down by about 50% 
compared to when each is run in isolation (test case 3).  This 
result demonstrates that TWs and AWs share resources roughly 
equally when running together without an outsized impact on 

each other.   Test case 4 introduces a read-only workspace with 2 
leaves in it that is used to run AWs. This new workspace 
replicates the workload from the primary writable workspace 
that runs TWs as described in section 3.1, effectively doubling 
the compute available to the cluster.  This new configuration 
doesn’t impact TWs throughput when compared to test case 1 
without the read-only workspace. AWs throughput is 
dramatically improved vs case 3 where it shared a single 
workspace with TWs.  This is not too surprising as the AWs 
have their own dedicated compute resources in test case 4.  The 
AWs QPS was impacted by ~20% compared to running the AWs 
workload without any TWs at all (test case 2) as S2DB needed to 
do some extra work to replicate the live TWs transactions in this 
case which used up some CPU. Regarding the replication lag, the 
AWs workspace had on average less than 1 ms of lag, being only 
a handful of transactions behind the TWs workspace. Test case 5 
was run with blob storage disabled (all data is stored on local 
disks) and the performance was very close to the equivalent test 
case with blob storage enabled (test case 4). This shows that 
asynchronously uploading to blob storage doesn’t use up 
noticeable hardware resources. 

Figure 4:  TPC-H 1TB query runtimes (lower is better) 

Figure 5: Summary of TPC-C and TPC-H throughputs 
(higher is better) 

7 Related Work  

Most HTAP databases on the market today are systems evolved 
from existing OLTP engines. Oracle [22] and SQL Server [14] 
have both augmented their popular rowstore engines by adding 
columnstore storage to them. Oracle’s columnstore is in-memory 
only and designed to speed up scans over top of its on-disk 
rowstore. SQL Server’s columnstore is a traditional on-disk 
columnstore and can be created alongside secondary B-tree 
rowstore indexes, which is comparable to S2DB’s unified table 
design. However, SQL Server’s secondary indexes are less 



 

 

integrated into their columnstore than S2DB. For example, SQL 
Server requires a mapping index to map between secondary key 
rows and the position of the row in the clustered columnstore. 
S2DB stores offsets directly in its secondary keys avoiding this 
indirection and improving performance of secondary key 
lookups. SQL Server also needs to do secondary B-tree index 
maintenance during bulk loading. S2DB’s secondary indexes are 
broken into segments similar to how columns are stored, and are 
merged in the background which improves load performance by 
moving most of the index maintenance work out of the bulk data 
loading code path. 
 TiDB[23] was initially built as a distributed, highly available 
rowstore and later added the capability to transparently replicate 
data into columnstore format to improve the performance of 
analytical queries. This design allows for OLTP queries to target 
the rowstore and OLAP queries to target the columnstore 
replicas at the cost of having to store the data twice in two 
different formats. Using OLAP replicas in this fashion has some 
limitations that S2DB’s unified table design doesn’t have. The 
replica design can’t support both OLTP writes and OLAP reads 
within the same transaction because the OLTP writes won’t be 
replicated to the OLAP store yet. Forcing all writes through an 
OLTP optimized store also means TiDB is unable to gain the bulk 
data loading performance benefits of keeping the data only in 
highly compressed columnstore format. TiDB has separate 
storage and query nodes within a cluster, but it doesn’t make use 
of blob storage as a shared disk which means it misses out on the 
durability, elasticity and cost benefits mentioned in section 3.3. 
 Janus[48] also uses a write optimized rowstore for OLTP and 
read optimized column store for OLAP with a transactionally 
consistent data movement pipeline moving data from the 
rowstore to the columnstore. Janus is unique in that it allows the 
read and write optimized stores to have different partitioning 
schemes and its data movement pipeline batches up transactions 
so they can more efficiently be applied on the columnstore. This 
design  picks up most of the same limitations mentioned above 
for TiDB as far as requiring data to be stored in two different 
formats. 
 There are several databases built from scratch to support 
HTAP. Hyper [20, 25] supports a high performance in-memory 
hybrid rowstore and columnstore engine. It supports running 
OLAP queries on a snapshot of the OLTP data, but only operates 
on datasets that fit into main memory. SAP HANA[24] supports 
in-memory rowstores and in-memory columnstore tables among 
other storage engines. Developers choose which table type they 
prefer for each table. It also supports replicating data from a 
rowstore into a columnstore so the same data can be stored in 
both formats. This has similar disadvantages to the TiDB OLAP 
replica design mentioned above.  Neither Hyper nor SAP HANA 
support using blob storage as a shared disk. 
 Most cloud data warehouses today use a blob store for 
persistent storage and keep only frequently queried data cached 
on the hosts they use to run queries. Snowflake [26], Redshift 
[27] and Databricks [30] all follow this pattern. These systems 
force new data to be written to blob storage before it is 
considered durable which limits their ability to support low 

latency, high throughput transactional write workloads. These 
systems also don’t support the fine-grained indexing and 
seekable compression schemes of S2DB’s unified table storage 
that are needed to run low latency point queries for OLTP. 
 Wildfire [29] is a database that adds HTAP capabilities to 
Apache Spark. It commits transactions on local SSDs before 
converting the data into columnstore format and moving it to 
blob storage asynchronously. Unlike S2DB, it doesn’t ship its 
transaction logs to blob storage so it doesn’t support point in 
time restores from blob storage. Wildfire also builds an LSM Tree 
during data ingestion to allow index lookups and can spill this 
index to the blob store if needed. The performance of wildfire on 
point updates and deletes was not evaluated. The WiSER project 
later added stronger transactional guarantees to Wildfire [38]. 
 Procella [11] is a database system built by Google that 
powers the real-time analytical features of YouTube. It has many 
similar design goals to S2DB as far as support for low-latency 
selective queries over columnstore data via inverted indexes and 
seekable compression schemes. It also supports separated storage 
by making use of Google’s internal blob storage service. 
Although Procella is designed for low latency analytics and 
streaming ingestion, it doesn’t support OLTP. It has special APIs 
for data ingestion but no support for low latency point read and 
write queries with millisecond latencies. 

8 Conclusion 

S2DB was designed to handle transactional and analytical 
workloads with strong performance. Its use of blob storage 
enables the cost, durability and elasticity benefits of shared-disk 
databases such as cloud data warehouses without impacting its 
ability to run low-latency, high-throughput write transactions. 
S2DB only stores cold data in blob storage. It never writes to the 
blob store to commit transactions. S2DB’s unified table storage 
uses a combination of an in-memory rowstore and an on-disk 
columnstore that supports secondary and unique keys via 
inverted indexes. This design has the fast scan performance of a 
traditional columnstore while enabling efficient point queries via 
indexing. The set of design trade-offs we have chosen has been 
validated by the successful use of S2DB for a varied set of 
workloads by our customers, often meeting application 
requirements that previously required using multiple specialized 
databases. 

ACKNOWLEDGMENTS 
We would like to thank the SingleStore engineering team for 
their efforts over the years in making the various ideas in this 
paper a reality.  Their ingenuity and hard work are a key part of 
the success of S2DB. We also need to call out our customers who 
took the time to share their feedback, expectations, and uses 
cases with us. They played a large role in molding the product 
into what it is today. 

REFERENCES 
[1]  AWS Cloud Databases (2021). https://aws.amazon.com/products/databases/   

https://aws.amazon.com/products/databases/


 

[2]  Michael Stonebraker and Ugur Cetintemel. 2005. "One Size Fits All": An Idea 
Whose Time Has Come and Gone. In Proceedings of the 21st International 
Conference on Data Engineering (ICDE ‘05). IEEE Computer Society, USA, 2–
11. DOI:https://doi.org/10.1109/ICDE.2005.1 

[3]  Amazon S3 (2021). https://aws.amazon.com/s3/ 
[4]  Amazon EC2 (2021). https://aws.amazon.com/ec2 
[5] A. Skidanov, A. J. Papito and A. Prout, "A column store engine for real-time 

streaming analytics," 2016 IEEE 32nd International Conference on Data 
Engineering (ICDE), 2016, pp. 1287-1297, doi: 10.1109/ICDE.2016.7498332. 

[6] A. Prout, The Story Behind SingleStore’s Skiplist Indexes (2019). 
https://www.singlestore.com/blog/what-is-skiplist-why-skiplist-index-for-
memsql/  

[7] Michal Nowakiewicz, Eric Boutin, Eric Hanson, Robert Walzer, and Akash 
Katipally. 2018. BIPie: Fast Selection and Aggregation on Encoded Data using 
Operator Specialization. In Proceedings of the 2018 International Conference 
on Management of Data (SIGMOD ‘18). Association for Computing 
Machinery, New York, NY, USA, 1447–1459. 
DOI:https://doi.org/10.1145/3183713.3190658  

[8]  O’Neil, P., Cheng, E., Gawlick, D. et al. The log-structured merge-tree (LSM-
tree). Acta Informatica 33, 351–385 (1996). 
https://doi.org/10.1007/s002360050048 

[9]  Peter A Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-
Pipelining Query Execution, Proc. of the 2005 CIDR Conf. 

[10] Dong, S., Callaghan, M.D., Galanis, L., Borthakur, D., Savor, T., & Strum, M. 
(2017). Optimizing Space Amplification in RocksDB. CIDR. 

[11] Chattopadhyay, B., Dutta, P., Liu, W., Tinn, O., McCormick, A., Mokashi, A., 
Harvey, P., Gonzalez, H., Lomax, D., Mittal, S., Ebenstein, R., Mikhaylin, N., 
Lee, H., Zhao, X., Xu, T., Perez, L., Shahmohammadi, F., Bui, T., Mckay, N., 
Aya, S., Lychagina, V., & Elliott, B. (2019). Procella: Unifying serving and 
analytical data at YouTube. Proc. VLDB Endow., 12, 2022-2034. 

[12] Luo, C., & Carey, M.J. (2019). LSM-based storage techniques: a survey. The 
VLDB Journal, 29, 393-418. 

[13] Indexing with SSTable attached secondary indexes (SASI). 
https://docs.datastax.com/en/dse/5.1/cql/cql/cql_using/useSASIIndexConcept.
html  

[14] P. Larson, A. Birka, E. N. Hanson, W. Huang, M. Nowakiewicz, and V. 
Papadimos. Real-Time Analytical Processing with SQL Server. PVLDB, 
8(12):1740–1751, 2015. 

[15] InnoDB Clustered and Secondary Indexes 
https://dev.mysql.com/doc/refman/8.0/en/innodb-index-types.html  

[16] Lipcon, Todd et al. “Kudu : Storage for Fast Analytics on Fast Data ∗.” (2016). 
[17] Bench marking code. https://github.com/memsql/benchmarks-tpc  
[18] DB-Engines Ranking. https://db-engines.com/en/ranking 
[19] Singlestore Unofficial TPC Benchmarking. 

https://www.singlestore.com/blog/memsql-tpc-benchmarks /  
[20] Kemper, A., & Neumann, T. (2011). HyPer: A hybrid OLTP&OLAP main 

memory database system based on virtual memory snapshots. 2011 IEEE 27th 
International Conference on Data Engineering, 195-206. 

[21] Amazon RDS DB instance storage. 
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.h
tml  

[22] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, et al. Oracle Database In-
Memory: A dual format in-memory database. In ICDE, pages 1253–1258. IEEE 
Computer Society, 2015. 

[23]  Huang, D., Liu, Q., Cui, Q., Fang, Z., Ma, X., Xu, F., Shen, L., Tang, L., Zhou, Y., 
Huang, M., Wei, W., Liu, C., Zhang, J., Li, J., Wu, X., Song, L., Sun, R., Yu, S., 
Zhao, L., Cameron, N., Pei, L., & Tang, X. (2020). TiDB: A Raft-based HTAP 
Database. Proc. VLDB Endow., 13, 3072-3084. 

[24]  J. Lee, S. Moon, K. H. Kim, D. H. Kim, S. K. Cha, W. Han, C. G. Park, H. J. Na, 
and J. Lee. Parallel Replication across Formats in SAP HANA for Scaling Out 
Mixed OLTP/OLAP Workloads. PVLDB, 10(12):1598–1609, 2017. 

[25] Lang, H., Mühlbauer, T., Funke, F., Boncz, P.A., Neumann, T., & Kemper, A. 
(2016). Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using 
both Vectorization and Compilation. Proceedings of the 2016 International 
Conference on Management of Data. 

[26] Dageville, B., Cruanes, T., Zukowski, M., Antonov, V.N., Avanes, A., Bock, J., 
Claybaugh, J., Engovatov, D., Hentschel, M., Huang, J., Lee, A.W., Motivala, A., 

Munir, A., Pelley, S., Povinec, P., Rahn, G., Triantafyllis, S., & Unterbrunner, P. 
(2016). The Snowflake Elastic Data Warehouse. Proceedings of the 2016 
International Conference on Management of Data. 

[27] Ippokratis Pandis: The evolution of Amazon Redshift. Proc. VLDB Endow. 
14(12): 3162-3163 (2021) 

[28] Verbitski, A., Gupta, A., Saha, D., Brahmadesam, M., Gupta, K.K., Mittal, R., 
Krishnamurthy, S., Maurice, S., Kharatishvili, T., & Bao, X. (2017). Amazon 
Aurora: Design Considerations for High Throughput Cloud-Native Relational 
Databases. Proceedings of the 2017 ACM International Conference on 
Management of Data. 

[29] Shekar, K. & Bhoomeshwar, B.. (2020). Evolving Database for New Generation 
Big Data Applications. 10.1007/978-981-15-1632-0_26. 

[30] Armbrust, M., Das, T., Paranjpye, S., Xin, R., Zhu, S., Ghodsi, A., Yavuz, B., 
Murthy, M., Torres, J., Sun, L., Boncz, P.A., Mokhtar, M., Hovell, H.V., Ionescu, 
A., Luszczak, A., Switakowski, M., Ueshin, T., Li, X., Szafranski, M., Senster, P., 
& Zaharia, M. (2020).Delta Lake: High-Performance ACID Table Storage over 
Cloud Object Stores. Proceedings of the VLDB Endowment, 13, 3411 - 3424. 

[31] Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., 
Lau, E., Lin, A., Madden, S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N., & 
Zdonik, S.B. (2005). C-Store: A Column-oriented DBMS. VLDB. 

[32] Optimizing Schema Design for Cloud Spanner. 
https://cloud.google.com/spanner/docs/whitepapers/optimizing-schema-
design     

[33] Avinash Lakshman, Prashant Malik. Cassandra: a decentralized structured 
storage system. ACM SIGOPS Oper. Syst. Rev. 44(2): 35-40 (2010) 

[34] Chang, F.W., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., 
Chandra, T., Fikes, A., & Gruber, R.E. (2008). Bigtable: A Distributed Storage 
System for Structured Data. TOCS. 

[35] Stonebraker, M. (1985). The Case for Shared Nothing. IEEE Database Eng. Bull.. 
[36] WiredTiger: Schema, Columns, Column Groups, Indices and Projections. 

https://source.wiredtiger.com/2.5.2/schema.html   
[37] Luo, C., & Carey, M.J. (2019). LSM-based storage techniques: a survey. The 

VLDB Journal, 29, 393-418. 
[38] Barber, Ronald & Garcia-Arellano, Christian & Grosman, Ronen & Lohman, 

Guy & Mohan, C. & Mueller, Rene & Pirahesh, Hamid & Raman, Vijayshankar 
& Sidle, Richard & Storm, Adam & Tian, Yuanyuan & Tozun, Pinar & Wu, 
Yingjun. (2019). WiSer: A Highly Available HTAP DBMS for IoT Applications. 

[39] E. Hanson, SingleStore’s Patented Universal Storage, 2021. 
https://www.singlestore.com/blog/singlestore-universal-storage-episode-4/   

[40] Lattner, C., & Adve, V.S. (2004). LLVM: a compilation framework for lifelong 
program analysis & transformation. International Symposium on Code 
Generation and Optimization, 2004. CGO 2004., 75-86. 

[41] Neumann, T. (2011). Efficiently Compiling Efficient Query Plans for Modern 
Hardware. Proc. VLDB Endow., 4, 539-550. 

[42] Özcan, F., Tian, Y., & Tözün, P. (2017). Hybrid Transactional/Analytical 
Processing: A Survey. Proceedings of the 2017 ACM International Conference 
on Management of Data. 

[43] Sanders, P., & Transier, F. (2007). Intersection in Integer Inverted Indices. 
ALENEX. 

[44] Amazon Elastic Block Store (EBS). https://aws.amazon.com/ebs/  
[45] Amazon S3 FAQs. https://aws.amazon.com/s3/faqs/ 
[46] Chen, Jack & Jindel, Samir & Walzer, Robert & Sen, Rajkumar & 

Jimsheleishvilli, Nika & Andrews, Michael. (2016). The MemSQL query 
optimizer: a modern optimizer for real-time analytics in a distributed database. 
Proceedings of the VLDB Endowment. 9. 1401-1412. 10.14778/3007263.3007277. 

[47] Performance comparison of HeatWave with Snowflake, Amazon Redshift, 
Amazon Aurora, and Amazon RDS for MySQL. 
https://www.oracle.com/mysql/heatwave/performance  

[48] Arora, Vaibhav & Nawab, Faisal & Agrawal, Divyakant & Abbadi, Amr. (2017). 
Janus: A Hybrid Scalable Multi-Representation Cloud Datastore. IEEE 
Transactions on Knowledge and Data Engineering. PP. 1-1. 
10.1109/TKDE.2017.2773607  

[49] Eric Boutin, How Careful Engineering Led to Processing Over a Trillion Rows 
Per Second (2018). https://www.singlestore.com/blog/how-to-process-trillion-
rows-per-second-ad-hoc-analytic-queries/  

[50] G. LaLonde, J. Cheng, S. Wang, TPC Benchmarking Results (2021). 
https://www.singlestore.com/blog/tpc-benchmarking-results/ 

  

https://www.singlestore.com/blog/what-is-skiplist-why-skiplist-index-for-memsql/
https://www.singlestore.com/blog/what-is-skiplist-why-skiplist-index-for-memsql/
https://docs.datastax.com/en/dse/5.1/cql/cql/cql_using/useSASIIndexConcept.html
https://docs.datastax.com/en/dse/5.1/cql/cql/cql_using/useSASIIndexConcept.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-index-types.html
https://github.com/memsql/benchmarks-tpc
https://www.singlestore.com/blog/memsql-tpc-benchmarks%20/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://cloud.google.com/spanner/docs/whitepapers/optimizing-schema-design
https://cloud.google.com/spanner/docs/whitepapers/optimizing-schema-design
https://source.wiredtiger.com/2.5.2/schema.html
https://www.singlestore.com/blog/singlestore-universal-storage-episode-4/
https://aws.amazon.com/ebs/
https://aws.amazon.com/s3/faqs/
https://www.oracle.com/mysql/heatwave/performance
https://www.singlestore.com/blog/how-to-process-trillion-rows-per-second-ad-hoc-analytic-queries/
https://www.singlestore.com/blog/how-to-process-trillion-rows-per-second-ad-hoc-analytic-queries/
https://www.singlestore.com/blog/tpc-benchmarking-results/

